A proposal for a template language for Abstract Wikipedia

Natural language generation applications have been ‘mainstreaming’ behind the scenes for the last couple of years, from automatically generating text for images, to weather forecasts, summarising news articles, digital assistants that mechanically blurt out text based the structured information they have, and many more. Google, Reuters, BBC, Facebook – they all do it. Wikipedia is working on it as well, principally within the scope of Abstract Wikipedia to try to build a better multilingual Wikipedia [1] to reach more readers better. They all have some source of structured content – like data fetched from a database or spreadsheet, information from, say, a UML class diagram, or knowledge from some knowledge graph or ontology – and a specification as to what the structure of the sentence should be, typically with some grammar rules to at least prettify it, if not also being essential to generate a grammatically correct sentence [2]. That specification is written in templates that are then filled with content.

For instance, a simple rendering of a template may be “Each [C1] [R1] at least one [C2]” or “[I1] is an instance of [C1]”, where the things within the square brackets are variables standing in for content that will be fetched from the source, like a class, relationship, or individual. Linking these to a knowledge graph about universities, it may generate, e.g., “Each academic teaches at least one course” and “Joanne Soap is an instance of Academic”. To get the computer to do this, just “Each [C1] [R1] at least one [C2]” for template won’t do: we need to tell it what the components are so that the program can process it to generate that (pseudo-)natural language sentence.

Many years ago, we did this for multiple languages and used XML to specify the templates for the key aspects of the content. The structured input were conceptual data models in ORM in the DOGMA tool that had that verbalisation component [3]. As example, the template for verbalising a mandatory constraint was as follows:

<Constraint xsi:type="Mandatory">
 <Text> - [Mandatory] Each</Text>
 <Object index="0"/>
 <Text>must</Text>
 <Role index="0"/>
 <Text>at least one</Text>
 <Object index="1"/>
</Constraint>

Besides demarcating the sentence and indicating the constraint, there’s fixed text within the <text> … </text> tags and there’s the variable part with the <Object… that declares that the name of the object type has to be fetched and the <Role… that declares that the name of the relationship has to be fetched from the model (well, more precisely in this care: the reading label), which were elements declared in an XML Schema. With the same example as before, where Academic is in the object index “0” position and Course in the “1” position (see [3] for details), the software would then generate “ – [Mandatory] Each Academic must teaches at least one Course.”

This can be turned up several notches by adding grammatical features to it in order to handle, among others, gender for nouns in German, because they affect the rendering of the ‘each’ and ‘one’ in the sample sentence, not to mention the noun classes of isiZulu and many other languages [4], where even the verb conjugation depends on the noun class of the noun that plays the role of subject in the sentence. Or you could add sentence aggregation to combine two templates into one larger one to generate more flowy text, like a “Joanne Soap is an academic who teaches at least one course”. Or change the application scenario or the machinery for how to deal with the templates. For instance, instead of those variables in the template + code elsewhere that does the content fetching and any linguistic processing, we could put part of that in the template specification. Then there are no variables as such in the template, but functions. The template specification for that same constraint in an ORM diagram might then look like this:

ConstraintIsMandatory {
 “[Mandatory] Each ”
 FetchObjectType(0)
 “ must ”
 MakeInfinitive(FetchRole(0))
 “ at least one ”
 FetchObjectType(1)}

If you want to go with newer technology than markup languages, you may prefer to specify it in JSON. If you’re excited about functional programming languages and see everything through the lens of functions, you even can turn the whole template specification into a bunch of only functions. Either way: there must be a specification of how those templates are permitted to look like, or: what elements can be used to make a valid specification of a template. This so that the software will work properly so that it neither will spit out garbage nor will halt halfway before returning anything. What is permitted in a template language can be specified by means of a model, such as an XML Schema or a DTD, a JSON artefact, or even an ontology [5], a formal definition in some notation of choice, or by defining a grammar (be it a CFG or in BNF notation), and anyhow with enough documentation to figure out what’s going on.

How might this look like in the context of Abstract Wikipedia? For the natural language generation aspects and its first proposal for the realiser architecture, the structured content to be rendered in a natural language sentence is fetched from Wikidata, as is the lexicographic data, and the functions to do the various computations are to come from/go in Wikifunctions. They’re then combined with the templates in various stages in the realiser pipeline to generate those sentences. But there was still a gap as to what those templates in this context may look like. Ariel Gutman, a google.org fellow working on Abstract Wikipedia, and I gave it a try and that proposal for a template language for Abstract Wikipedia is now online accessible for comment, feedback, and, if you happen to speak a grammatically rich language, an option to provide difficult examples so that we can check whether the language is expressive enough.

The proposal is – as any other proposal for a software system – some combination of theoretical foundations, software infrastructure peculiarities, reasoned and arbitrary design decisions, compromises, and time constraints. Here’s a diagram of the key aspects of the syntax, i.e., with the elements, how they relate, and the constraints holding between them, in ORM notation:

An illustrative diagram with the key features of the template language in ORM notation.

There’s also a version in CFG notation, and there are a few examples, each of which shows how the template looks like for verbalising one piece of information (Malala Yousafzai’s age) in Swedish, French, Hebrew, and isiZulu. Swedish is the simplest one, as would English or Dutch be, so let’s begin with that:

Persoon_leeftijd_nl(Entity,Age_in_years): “{Person(Entity) is 
  {Age_in_years} jaar.}”

Where the Person(Entity) fetches the name of the person (that’s identified by an identifier) and the Age_in_years fetches the age. One may like to complicate matters and add a conditional statement, like that any age less than 30 will render that last part not just as jaar ‘year’, but as jaar oud ‘years old’ but jaar jong ‘years young’, but where that dividing line is, is a sensitive topic for some and I will let that rest. In any case, in Dutch, there’s no processing of the number itself to be able to render it in the sentence – 25 renders as 25 – but in other languages there is. For instance, in isiZulu. In that case, instead of a simple fetching of the number, we can put a function in the slot:

Person_AgeYr_zu(Entity,Age_in_years): “{subj:Person(Entity)} 
  {root:subjConcord()}na{Year(Age_in_years).}”

That Year(Age_in_years) is a function that is based on either another function or a sub-template. For instance, it can be defined as follows:

Year_zu(years):"{root:Lexeme(L686326)} 
  {concord:RelativeConcord()}{Copula()}{concord_1<nummod:NounPrefix()}-
  {nummod:Cardinal(years)}"

Where Lexeme(L686326) is the word for ‘year’ in isiZulu, unyaka, and for the rest, it first links the age rendering to the ‘year’ with the RelativeConcord() of that word, which practically fetches e- for the ‘years’ (iminyaka, noun class 4),  then gets the copulative (ng in this case), and then the concord for the noun class of the noun of the number. Malala is in her 20s, which is amashumi amabili ..  (noun class 6, which is computed via Cardinal(years)), and thus the function nounPrefix will fetch ama-. So, for Malala’s age data, Year_zu(years) will return iminyaka engama-25. That then gets processed with the rest of the Person_AgeYr_zu template, such as adding an U to the name by subj:Person(Entity), and later steps in the pipeline that take care of things like phonological conditioning (-na- + i- = –ne-), to eventually output UMalala Yousafzai uneminyaka engama-25. In other words: such a template indeed can be specified with the proposed template syntax.

There’s also a section in the proposal about how that template language then connects to the composition syntax so that it can be processed by the Wikifunctions Orchestrator component of the overall architecture. That helps hiding a few complexities from the template declarations, but, yes, someone’s got to write those functions (or take them from existing grammar engines) that will take care of those more or less complicated processing steps. That’s a different problem to solve. You also could link it up with another realiser by means of a transformation the the input type it expects. For now, it’s the syntax of the declarative part for the templates.

If you have any questions or comments or suggestions on that proposal or interesting use cases to test with, please don’t hesitate to add something to the talk page of the proposal, leave a comment here, or contact either Ariel or me directly.

 

References

[1] Vrandečić, D. Building a multilingual Wikipedia. Communications of the ACM, 2021, 64(4), 38-41.

[2] Mahlaza, Z., Keet, C.M. Formalisation and classification of grammar and template-mediated techniques to model and ontology verbalisation. International Journal of Metadata, Semantics and Ontologies, 2020, 14(3): 249-262.

[3] M. Jarrar, C.M. Keet, and P. Dongilli. Multilingual verbalization of ORM conceptual models and axiomatized ontologies. STARLab Technical Report, Vrije Universiteit Brussels, Belgium. February 2006.

[4] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2017, 51:131-157.

[5] Mahlaza, Z., Keet, C. M. ToCT: A Task Ontology to Manage Complex Templates. Proceedings of the Joint Ontology Workshops 2021, FOIS’21 Ontology Showcase. Sanfilippo, E.M. et al. (Eds.). CEUR-WS vol. 2969. 9p.

Advertisement