Relations with roles / verbalising object properties in isiZulu

The narratives can be very different for the paper “A model for verbalising relations with roles in multiple languages” that was recently accepted paper at the 20th International Conference on Knowledge Engineering and Knowledge management (EKAW’16), for the paper makes a nice smoothie of the three ingredients of language, logic, and ontology. The natural language part zooms in on isiZulu as use case (possibly losing some ontologist or logician readers), then there are the logics about mapping the Description Logic DLR’s role components with OWL (lose possible interest of the natural language researchers), and a bit of philosophy (and lose most people…). It solves some thorny issues when trying to verbalise complicated verbs that we need for knowledge-to-text natural language generation in isiZulu and some other languages (e.g., German). And it solves the matching of logic-based representations popularised in mainly UML and ORM (that typically uses a logic in the DLR family of Description Logic languages) with the more commonly used OWL. The latter is even implemented as a Protégé plugin.

Let me start with some use-cases that cause problems that need to be solved. It is well-known that natural language renderings of ontologies facilitate communication with domain experts who are expected to model and validate the represented knowledge. This is doable for English, with ACE in the lead, but it isn’t for grammatically richer languages. There, there are complications, such as conjugation of verbs, an article that may be dependent on the preposition, or a preposition may modify the noun. For instance, works for, made by, located in, and is part of are quite common names for object properties in ontologies. They all do have a dependent preposition, however, there are different verb tenses, and the latter has a copulative and noun rather than just a verb. All that goes into the object properties name in an ‘English-based ontology’ and does not really have to be processed further in ontology verbalisation other than beautification. Not so in multiple other languages. For instance, the ‘in’ of located in ends up as affixes to the noun representing the object that the other object is located in. Like, imvilophu ‘envelope’ and emvilophini ‘in the envelope’ (locative underlined). Even something straightforward like a property eats can end up having to be conjugated differently depending on who’s eating: when a human eats, it is udla in isiZulu, but for, say, a dog, it is idla (modification underlined), which is driven by the system of noun classes, of which there are 17 in isiZulu. Many more examples illustrating different issues are described in the paper. To make a long story short, there are gradations in complicating effects, from no effect where a preposition can be squeezed in with the verb in naming an OP, to phonological conditioning, to modifying the article of the noun to modifying the noun. A ‘3rd pers. sg.’ may thus be context-dependent, and notions of prepositions may modify the verb or the noun or the article of the noun, or both. For a setting other than English ontologies (e.g., Greek, German, Lithuanian), a preposition may belong neither to the verb nor to the noun, but instead to the role that the object plays in the relation described by the verb in the sentence. For instance, one obtains yomuntu, rather than the basic noun umuntu, if it plays the role of the whole in a part-whole relation like in ‘heart is part of a human’ (inhliziyo iyingxenye yomuntu).

The question then becomes how to handle such a representation that also has to include roles? This is quite common in conceptual data modelling languages and in the DLR family of DL languages, which is known in ontology as positionalism [2]. Bumping up the role to an element in the representation language—thus, in addition to the relationship—enables one to attach information to it, like whether there is a (deep) preposition associated with it, the tense, or the case. Such role-based annotations can then be used to generate the right element, like einen Betrieb ‘some company’ to adjust the article for the case it goes with in German, or ya+umuntu=yomuntu ‘of a human’, modifying the noun in the object position in the sentence.

To get this working properly, with a solid theoretical foundation, we reused a part of the conceptual modelling languages’ metamodel [3] to create a language model for such annotations, in particular regarding the attributes of the classes in the metamodel. On its own, however, it is rather isolated and not immediately useful for ontologies that we set out to be in need of verbalising. To this end, it links to the ‘OWL way of representing relations’ (ontologically: the so-called standard view), and we separate out the logic-based representation from the readings that one can generate with the structured representation of the knowledge. All in all, the simplified high-level model looks like the picture below.

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

That much for the conceptual part; more details are described in the paper.

Just a fluffy colourful diagram isn’t enough for a solid implementation, however. To this end, we mapped one of the logics that adhere to positionalism to one of the standard view, being DLR [4] and OWL, respectively. It equally well could have been done for other pairs of languages (e.g., with Common Logic), but these two are more popular in terms of theory and tools.

Having the conceptual and logical foundations in place, we did implement it to see whether it actually can be done and to check whether the theory was sufficient. The Protégé plugin is called iMPALA—it could be an abbreviation for ‘Model for Positionalism And Language Annotation’—that both writes all the non-OWL annotations in a separate XML file and takes care of the renderings in Protégé. It works; yay. Specifically, it handles the interaction between the OWL file, the positionalist elements, and the annotations/attributes, plus the additional feature that one can add new linguistic annotation properties, so as to cater for extensibility. Here are a few screenshots:

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

The prey role in the axiom of the impala being eaten by the ibhubesi.

The prey role in the axiom of the impala being eaten by the ibhubesi.

 Annotations of the prey role itself, which is a role in the relationship ukudla.

Annotations of the prey role itself, which is a role in the relationship ukudla.

We did test it a bit, from just the regular feature testing to the African Wildlife ontology that was translated into isiZulu (spoken in South Africa) and a people and pets ontology in ciShona (spoken in Zimbabwe). These details are available in the online supplementary material.

The next step is to tie it all together, being the verbalisation patterns for isiZulu [5,6] and the OWL ontologies to generate full sentences, correctly. This is set to happen soon (provided all the protests don’t mess up the planning too much). If you want to know more details that are not, or not clearly, in the paper, then please have a look at the project page of A Grammar engine for Nguni natural language interfaces (GeNi), or come visit EKAW16 that will be held from 21-23 November in Bologna, Italy, where I will present the paper.

 

References

[1] Keet, C.M., Chirema, T. A model for verbalising relations with roles in multiple languages. 20th International Conference on Knowledge Engineering and Knowledge Management EKAW’16). Springer LNAI, 19-23 November 2016, Bologna, Italy. (in print)

[2] Leo, J. Modeling relations. Journal of Philosophical Logic, 2008, 37:353-385.

[3] Keet, C.M., Fillottrani, P.R. An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data & Knowledge Engineering, 2015, 98:30-53.

[4] Calvanese, D., De Giacomo, G. The Description Logics Handbook: Theory, Implementation and Applications, chap. Expressive description logics, pp. 178-218. Cambridge University Press (2003).

[5] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2016, in print.

[6] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. Proceedings of the 9th International Natural Language Generation conference 2016 (INLG’16), Edinburgh, Scotland, Sept 2016. ACL, 174-183.

Advertisements

Bootstrapping a Runyankore CNL from an isiZulu one mostly works well

Earlier this week the 5th Workshop on Controlled Natural Language (CNL’16) was held in Aberdeen, Scotland, where I presented progress made on a Runyankore CNL [1], rather than my student, Joan Byamugisha, who did most of the work on it (she could not attend due to nasty immigration rules by the UK, not a funding issue).

“Runyankore?”, you might ask. It is one of the languages spoken in Uganda. As Runyankore is very under-resourced, any bootstrapping to take a ‘shortcut’ to develop language resources would be welcome. We have a CNL for isiZulu [2], but that is spoken in South Africa, which is a few thousand kilometres further south of Uganda, and it is in a different Guthrie zone of the—in linguistics still called—Bantu languages, so it was a bit of a gamble to see whether those results could be repurposed for Runynakore. They could, needing only minor changes.

What stayed the same were the variables, or: components to make up a grammatically correct sentence when generating a sentence within the context of OWL axioms (ALC, to be more precise). They are: the noun class of the name of the concept (each noun is assigned a noun class—there are 20 in Runyankore), the category of the concept (e.g., noun, adjective), whether the concept is atomic (named OWL class) or an OWL class expression, the quantifier used in the axiom, and the position of the concept in the axiom. The only two real differences were that for universal quantification the word for the quantifier is the same when in the singular (cf. isiZulu, where it changes for both singular or plural), and for disjointness there is only one word, ti ‘is not’ (cf. isiZulu’s negative subject concord + pronomial). Two very minor differences are that for existential quantification ‘at least one’, the ‘at least’ is in a different place in the sentence but the ‘one’ behaves exactly the same, and ‘all’ for universal quantification comes after the head noun rather than before (but is also still dependent on the noun class).

It goes without saying that the vocabulary is different, but that is a minor aspect compared to figuring out the surface realisation for an axiom. Where the bootstrapping thus came in handy was that that arduous step of investigating from scratch the natural language grammar involved in verbalising OWL axioms could be skipped and instead the ones for isiZulu could be reused. Yay. This makes it look very promising to port to other languages in the Bantu language family. (yes, I know, “one swallow does not a summer make” [some Dutch proverb], but one surely is justified to turn up one’s hope a notch regarding generalizability and transferability of results.)

Joan also conducted a user survey to ascertain which surface realisation was preferred among Runyankore speakers, implemented the algorithms, and devised a new one for the ‘hasX’ naming scheme of OWL object properties (like hasSymptom and hasChild). All these details, as well as the details of the Runyankore CNL and the bootstrapping, are described in the paper [1].

 

I cannot resist a final comment on all this. There are people who like to pull it down and trivialise natural language interfaces for African languages, on the grounds of “who cares about text in those kind of countries; we have to accommodate the illiteracy with pictures and icons and speech and such”. People are not as illiterate as is claimed here and there (including by still mentally colonised people from African countries)—if they were, then the likes of Google and Facebook and Microsoft would not invest in localising their interfaces in African languages. The term “illiterate” is used by those people to include also those who do not read/write in English (typically an/the official language of government), even though they can read and write in their local language. People who can read and write—whichever natural language it may be—are not illiterate, neither here in Africa nor anywhere else. English is not the yardstick of (il)literacy, and anyone who thinks it is should think again and reflect a bit on cultural imperialism for starters.

 

References

[1] Byamugisha, J., Keet, C.M., DeRenzi, B. Bootstrapping a Runyankore CNL from an isiZulu CNL. 5th Workshop on Controlled Natural Language (CNL’16), Springer LNAI vol. 9767, 25-36. 25-27 July 2016, Aberdeen, UK. Springer’s version

[2] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2016. DOI: 10.1007/s10579-016-9340-0 (in print) accepted version

Automatically finding the feasible object property

Late last month I wrote about the updated taxonomy of part-whole relations and claimed it wasn’t such a big deal during the modeling process to have that many relations to choose from. Here I’ll back up that claim. Primarily, it is thanks to the ‘Foundational Ontology and Reasoner enhanced axiomatiZAtion’ (FORZA) approach which includes the Guided ENtity reuse and class Expression geneRATOR (GENERATOR) method that was implemented in the OntoPartS-2 tool [1]. The general idea of the GENERATOR method is depicted in the figure below, which outlines two scenarios: one in which the experts perform the authoring of their domain ontology with the help of a foundational ontology, and the other one without a foundational ontology.

generator

I think the pictures are clearer than the following text, but some prefer text, so here goes the explanation attempt. Let’s start with scenario A on the left-hand side of the figure: a modeller has a domain ontology and a foundational ontology and she wants to relate class two domain classes (indicated with C and D) and thus needs to select some object property. The first step is, indeed, selecting C and D (e.g., Human and Heart in an anatomy ontology); this is step (1) in the Figure.

Then (step 2) there are those long red arrows, which indicate that somehow there has to be a way to deal with the alignment of Human and of Heart to the relevant categories in the foundational ontology. This ‘somehow’ can be either of the following three options: (i) the domain ontology was already aligned to the foundational ontology, so that step (2) is executed automatically in the background and the modeler need not to worry, (ii) she manually carries out the alignment (assuming she knows the foundational ontology well enough), or, more likely, (iii) she chooses to be guided by a decision diagram that is specific to the selected foundational ontology. In case of option (ii) or (iii), she can choose to save it permanently or just use it for the duration of the application of the method. Step (3) is an automated process that moves up in the taxonomy to find the possible object properties. Here is where an automated reasoner comes into the equation, which can step-wise retrieve the parent class, en passant relying on taxonomic classification that offers the most up-to-date class hierarchy (i.e., including implicit subsumptions) and therewith avoiding spurious candidates. From a modeller’s viewpoint, one thus only has to select which classes to relate, and, optionally, align the ontology, so that the software will do the rest, as each time it finds a domain and range axiom of a relationship in which the parents of C and D participate, it is marked as a candidate property to be used in the class expression. Finally, the candidate object properties are returned to the user (step 4).

While the figure shows only one foundational ontology, one equally well can use a separate relation ontology, like PW or PWMT, which is just an implementation variant of scenario A: the relation ontology is also traversed upwards and on each iteration, the base ontology class is matched against relational ontology to find relations where the (parent of the) class is defined in a domain and range axiom, also until the top is reached before returning candidate relations.

The second scenario with a domain ontology only is a simplified version of option A, where the alignment step is omitted. In Figure-B above, GENERATOR would return object properties W and R as options to choose from, which, when used, would not generate an inconsistency (in this part of the ontology, at least). Without this guidance, a modeler could, erroneously, select, say, object property S, which, if the branches are disjoint, would result in an inconsistency, and if not declared disjoint, move class C from the left-hand branch to the one in the middle, which may be an undesirable deduction.

For the Heart and Human example, these entities are, in DOLCE terminology, physical objects, so that it will return structural parthood or plain parthood, if the PW ontology is used as well. If, on the other hand, say, Vase and Clay would have been the classes selected from the domain ontology, then a constitution relation would be proposed (be this with DOLCE, PW, or, say, GFO), for Vase is a physical object and Clay an amount of matter. Or with Limpopo and South Africa, a tangential proper parthood would be proposed, because they are both geographic entities.

The approach without the reasoner and without the foundational ontology decision diagram was tested with users, and showed that such a tool (OntoPartS) made the ontology authoring more efficient and accurate [2], and that aligning to DOLCE was the main hurdle for not seeing even more impressive differences. This is addressed with OntoPartS-2, so it ought to work better. What still remains to be done, admittedly, is that larger usability study with the updated version OntoPartS-2. In the meantime: if you use it, please let us know your opinion.

 

References

[1] Keet, C.M., Khan, M.T., Ghidini, C. Ontology Authoring with FORZA. 22nd ACM International Conference on Information and Knowledge Management (CIKM’13). ACM proceedings, pp569-578. Oct. 27 – Nov. 1, 2013, San Francisco, USA.

[2] Keet, C.M., Fernandez-Reyes, F.C., Morales-Gonzalez, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

An exhaustive OWL species classifier

Students enrolled in my ontology engineering course have to do a “mini-project” on a particular topic, chosen from a list of topics, such as on ontology quality, verbalisations, or language features, and may be theoretical or software development-oriented. In terms of papers, the most impressive result was OntoPartS that resulted in an ESWC2012 paper with the two postgraduate students [1], but also quite some other useful results have come out of it over the past 7 years that I’m teaching it in one form or another. This year’s top project in terms of understanding the theory, creativity to do something with it that hasn’t been done before, and working software using Semantic Web technologies was the “OWL Classifier” by Aashiq Parker, Brian Mc George, and Muhummad Patel.

The OWL classifier classifies an OWL ontology in any of its ‘species’, which can be any of the 8 specified in the standard, i.e., the 3 OWL 1 ones and the 5 OWL 2 ones. It also gives information on the DL ‘alphabet soup’—which axioms use which language feature with which letter, and an explanation of the letters—and reports on which axioms are the ones that violate a particular species. An example is shown in the following screenshot, with an exercise ontology on phone points:

phonePoints

The students’ motivation to develop it was because they had to learn about DLs and the OWL species, but Protégé 4.x and 5.x don’t tell you the species and the interfaces have only a basic, generic, explanation for the DL expressivity. I concur. And is has gotten worse with Protégé 5.0: if an ontology is outside OWL 2 DL, it still says the ‘old’ DL expressivity plus an easy-to-overlook tiny red triangle in the top-right corner once the reasoner was invoked (using Hermit 1.3.8) or a cryptic “internal reasoner error” message (Pellet), whereas with Protégé 4.x you at least got a pop-up box complaining about the ‘non-simple role…’ issues. Compare that with the neat feedback like this:

t15and16

It is also very ‘sensitive’—more so than one would be with Protégé alone. Any remote ontology imports have to be available at the location specified with the IRI. Violations due to wrong datatype usage is a known issue with the OWL Reasoner Evaluation set of ontologies, and which we’ve bumped into with the TDD testing as well. The tool doesn’t accept the invalid ones (wrong datatypes—one can select any XML data type in Protégé, but the OWL standard doesn’t support them all). In addition, a language such as OWL 2 QL has further restrictions on types of datatypes. (It is also not trivial to figure out manually whether some ontology is suitable for OBDA or not.) So I tried one from the Ontop website’s examples, presumably in OWL 2 QL:

fishdelish

Strictly speaking, it isn’t in OWL 2 QL! The OWL 2 QL profile does have xsd:integer as datatype [2], not xsd:int, as, and I quote the standard, “the intersection of the value spaces of any set of these datatypes [including xsd:integer but not xsd:int, mk] is either empty or infinite, which is necessary to obtain the desired computational properties”. [UPDATE 24-6, thanks to Martin Rezk:] The main toolset for OWL 2 QL, Ontop, actually does support xsd:int and a few other datatypes beyond the standard (e.g.: also float and boolean). There is similar syntax fun to be had with the pizza ontology: the original one is indeed in OWL DL, but if you open the file in Protégé 5 and save it, it is not in OWL DL anymore but in OWL 2 DL, for the save operation snuck in an owl#NamedIndividual. Click on the thumbnails below to see the before-and-after in the OWL classifier. This is not an increase in expressiveness—both are in SHOIN—just syntax and tooling.

pizzaOldpizzaP5

 

 

 

 

 

The OWL Classifier can thus classify both OWL 1 and OWL 2 ontologies, which it does through a careful orchestration of two OWL APIs: v1.4.3 was the last one to support OWL 1 species checking, whereas for the OWL 2 ontologies, the latest version is used (v4.2.3). The jar file and the source code are freely available on github for anyone to use and to take further. Turning it into a Protégé plugin very likely will make at least next year’s ontology engineering students happy. Comments, questions, and suggestion are welcome!

 

References

[1] Keet, C.M., Fernandez-Reyes, F.C., Morales-Gonzalez, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

[2] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, Carsten Lutz, eds. OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 11 December 2012 (2nd ed.).

Forum for AI Research 2015, Cape Town

In 10 day’s time, the (CAIR-driven) Forum for Artificial Intelligence Research 2015 (FAIR’15) Workshop will be held at UCT in Cape Town, South Africa, from March 30 to April 2. There are still some spaces available; registration is free, but please register (for catering purposes). What will you get for this ‘bargain price’? A lot of food for the mind!

FAIR’15 follows the same format as the previous 7 editions that went under various acronyms since 2008 (among others, MOWS, MOSS, MAIS, FAIR), with a mini-course, a tutorial, and postgraduate student presentations. This edition has the following on offer.

Ulrike Sattler (University of Manchester, UK) will present a mini-course on automated reasoners in the mornings. She will go into the details of what really happens when you click that menu option “start reasoner” and Protégé’s “?” that explains the deductions, and what are the factors that influence the reasoner’s performance.

David Toman (University of Waterloo, Canada) will present a 2-hour tutorial on using knowledge representation and reasoning (logic) for query optimization in relational databases and ontology-based data access (i.e., advanced aspects of database systems implementation).

Further, there are several sessions with postgraduate student presentations. Among others, Catherine Chavula will talk about new results (cf. [1]) in multilingual ontologies, Zubeida Khan will talk about foundational ontology interchangeability (details in [2]), and (very recently MSc cum laude graduated!) Nasubo Ongoma will present her thesis on logic-based temporal conceptual data modeling (including material from [3]). Gavin Rens will talk about probabilistic belief change, Kody Moodley on defeasible reasoning for description logics, Henriette Harmse about scenario testing with OWL, and Nishal Morar on taxonomic classification.

Aurona Gerber will give an overview of Data Science at CSIR, and for some more variety in the programme, I’ll talk about the stuff ontology [4]. Check the programme for all titles of the presentations and the abstracts of the mini-course and tutorial.

An important aim of FAIR is the networking among people in Southern Africa, and share and discuss informally our research in (predominantly) KR&R and related areas—so if the above topics sound interesting, or made you curious, or you would like to meet a potential MSc/PhD supervisor, you’re welcome to join (note: some basic knowledge of logics will be needed to understand the talks, though). If you have any questions, please don’t hesitate to contact one of the organisers, Arina Britz and me.

References

[1] Chavula, C., Keet, C.M. Is Lemon Sufficient for Building Multilingual Ontologies for Bantu Languages? 11th OWL: Experiences and Directions Workshop (OWLED’14). Keet, C.M., Tamma, V. (Eds.). Riva del Garda, Italy, Oct 17-18, 2014. CEUR-WS vol. 1265, 61-72.

[2] Khan, Z.C., Keet, C.M. Feasibility of automated foundational ontology interchangeability. 19th International Conference on Knowledge Engineering and Knowledge Management (EKAW’14). K. Janowicz et al. (Eds.). 24-28 Nov, 2014, Linkoping, Sweden. Springer LNAI 8876, 225-237.

[3] Keet, C.M., Ongoma, E.A.N. Temporal Attributes: their Status and Subsumption. Asia-Pacific Conference on Conceptual Modelling (APCCM’15). Koehler, H., Saeki, M. (Eds.), Conferences in Research and Practice in Information Technology (CRPIT), Vol. 165. 27-30 January, 2015, Sydney, Australia.

[4] Keet, C.M. A core ontology of macroscopic stuff. 19th International Conference on Knowledge Engineering and Knowledge Management (EKAW’14). K. Janowicz et al. (Eds.). 24-28 Nov, 2014, Linkoping, Sweden. Springer LNAI vol. 8876, 209-224.

CFP OWLED 2014

Here’s a bit of unvarnished promotion for the 1tth OWL: Experience and Directions Workshop (I’m the co-program chair, with Valentina Tamma, and Bijan Parsia is general chair)

—-

CALL FOR PAPERS: 11th OWL: Experiences and Directions Workshop (OWLED)
Riva del Garda, October 17th – 18th, 2014 co-located with ISWC 2014
http://www.w3.org/community/owled/workshop-2014/

Important Dates (All deadlines are Hawaii time)
• Paper submission due: July 30, 2014 EXTENDED TO AUGUST 4, 2014!!!
• Acceptance notifications: September 5, 2014
• Final papers due: September 18, 2014
• OWLED workshop: 17-18 October, 2014

OWLED is now also a Community Group at the W3C. Everyone is invited to participate:
http://www.w3.org/community/owled/

 

The aim of the OWL: Experiences and Directions Workshop (OWLED) is to establish an
international forum for the OWL community, where practitioners in industry and
academia, tool developers and others interested in OWL can describe real and
potential applications, share experience and discuss requirements for language
extensions/modifications. OWL has become the representational model of choice for
supporting interoperability in many industries. This has been made possible thanks
also to the development of numerous OWL reasoning systems that efficiently deal with
both intensional (ontologies) and extensional (data) query answering. In this
edition we aim to bridge the gap with the reasoner evaluation community and welcome
the submission of papers describing challenging ontologies and/or tasks to be
represented in OWL and processed by OWL reasoners. It also welcomes proposals for
improving the OWL 2 standard.

This year, we would like to invite submissions of the following types of papers:

Technical papers:  All submissions must be in English and be no longer than 12 pages
(including references). Papers that exceed this limit will be rejected without
review.  These papers should present research, implementation experience, and
reports on the above and related topics. Space will be reserved for authors to
present their work at the workshop.

Short papers (4-6 pages, including references): These papers should present work
that is in an early stage and/or include publishable (novel) implemented systems
that are of interest to the OWLED community; and (in case of an implemented system),
can be demonstrated at the workshop.

All submissions must be must be in PDF, and must adhere to the Springer LNCS style.
For more details, see Springer’s Author Instructions:
http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0.

Papers can be submitted online using the Easychair Conference system:

https://www.easychair.org/conferences/?conf=owled2014

Papers related to any aspects of OWL and extensions, applications, theory, methods
and tools, are welcome.

Topics of interest include, but are not limited to:

  • Application driven requirements for OWL
  • Applications of OWL, particularly: from industry, or for data integration, for service interoperability, for sophisticated/non-obvious inference, for knowledge discovery
  • and within specific domains such as: law, bio and biomed, eLearning
  • Experience of using OWL: notably, highly expressive ontologies or the OWL 2 Profiles
  • Evaluation of OWL tools e.g. reasoners
  • Benchmarks for OWL tools
  • Performance and scalability issues and improvements
  • Extensions to OWL
  • OWL and Rules
  • Implementation techniques and experience reports
  • Non-standard reasoning service (implementation and requirements for)
  • Explanation
  • Ontology comprehension and verbalisation
  • Multilingual OWL
  • Modelling issues
  • Tools, including editors, visualisation, parsers and syntax checkers
  • Collaborative editing of ontologies
  • Versioning of OWL ontologies
  • Alignment of OWL ontologies
  • Modularity
  • Query answering with OWL
  • SPARQL and OWL
  • Linked Data and OWL

Ontologies and Knowledge bases lecture notes for 2013

The lecture notes for the ontologies and knowledge bases module (COMP720) for semester 2 in 2013 are online available now. I’ve updated them compared to last year’s installment (mentioned here): in addition to the regular changes, like updates to reflect the advances made in the past year in ontology engineering, better explanations in several sections, and more examples, it includes the DL primer by Markus Kroetzsch, Ian Horrocks and Frantisek Simancik (saving me the time writing about that; thanks!), more exercises, and answers to selected exercises.

As last year, the target audience is computer science students in their 4th year (honours), so the notes are of an introductory nature. It has three blocks: logic foundations, ontology engineering, and advanced topics. The logic foundations contain a recap of FOL, the DL primer and the basics of automated reasoning with the Description Logics with ALC, the DL-based OWL species, and some practical automated reasoning. The ontology engineering block starts with top-down ontology development using foundational ontologies, then bottom-up ontology development to extract knowledge from ‘legacy’ representations, and finally (perhaps too briefly), methods and methodologies. The advanced topics are balanced in two directions, where the first one certainly will be covered and the second one if time permits: ontology-based data access applications (i.e., an ontology-drive information system) and temporal ontologies.

It is essentially still an evolving document, and relative completeness of sections varies slightly. Suggestions and corrections are welcome! If you want to use a part of it in your own lectures and/or use the accompanying slides with it, please contact me.