Orchestrating 28 logical theories of mereo(topo)logy

Parts and wholes, again. This time it’s about the logic-aspects of theories of parthood (cf. aligning different hierarchies of (part-whole) relations and make them compatible with foundational ontologies). I intended to write this post before the Ninth Conference on Knowledge Capture (K-CAP 2017), where the paper describing the new material would be presented by my co-author, Oliver Kutz. Now, afterwards, I can add that “Orchestrating a Network of Mereo(topo) logical Theories” [1] even won the Best Paper Award. The novelties, in broad strokes, are that we figured out and structured some hitherto messy and confusing state of affairs, showed that one can do more than generally assumed especially with a new logics orchestration framework, and we proposed first steps toward conflict resolution to sort out expressivity and logic limitations trade-offs. Constructing a tweet-size “tl;dr” version of the contents is not easy, and as I have as much space here on my blog as I like, it ended up to be three paragraphs here: scene-setting, solution, and a few examples to illustrate some of it.



As ontologists know, parthood is used widely in ontologies across most subject domains, such as biomedicine, geographic information systems, architecture, and so on. Ontology (the philosophers) offer a parthood relation that has a bunch of computationally unpleasant properties that are structured in a plethora of mereologicial and meretopological theories such that it has become hard to see the forest for the trees. This is then complicated in practice because there are multiple logics of varying expressivity (support more or less language features), with the result that only certain fragments of the mereo(topo)logical theories can be represented. However, it’s mostly not clear what can be used when, during the ontology authoring stage one may want to have all those features so as to check correctness, and it’s not easy to predict what will happen when one aligns ontologies with different fragments of mereo(topo)logy.



We solved these problems by specifying a structured network of theories formulated in multiple logics that are glued together by the various linking constructs of the Distributed Ontology, Model, and Specification Language (DOL). The ‘structured network of theories’-part concerns all the maximal expressible fragments of the KGEMT mereotopological theory and five of its most well-recognised sub-theories (like GEM and MT) in the seven Description Logics-based OWL species, first-order logic, and higher order logic. The ‘glued together’-part refers to relating the resultant 28 theories within DOL (in Ontohub), which is a non-trivial (understatement, unfortunately) metalanguage that has the constructors for the glue, such as enabling one to declare to merge two theories/modules represented in different logics, extending a theory (ontology) with axioms that go beyond that language without messing up the original (expressivity-restricted) ontology, and more. Further, because the annoying thing of merging two ontologies/modules can be that the merged ontology may be in a different language than the two original ones, which is very hard to predict, we have a cute proof-of-concept tool so that it assists with steps toward resolution of language feature conflicts by pinpointing profile violations.



The paper describes nine mechanisms with DOL and the mereotopological theories. Here I’ll start with a simple one: we have Minimal Topology (MT) partially represented in OWL 2 EL/QL in “theory8” where the connection relation (C) is just reflexive (among other axioms; see table in the paper for details). Now what if we add connection’s symmetry, which results in “theory4”? First, we do this by not harming theory8, in DOL syntax (see also the ESSLI’16 tutorial):

logic OWL2.QL
ontology theory4 =
ObjectProperty: C Characteristics: Symmetric %(t7)

What is the logic of theory4? Still in OWL, and if so, which species? The Owl classifier shows the result:


Another case is that OWL does not let one define an object property; at best, one can add domain and range axioms and the occasional ‘characteristic’ (like aforementioned symmetry), for allowing arbitrary full definitions pushes it out of the decidable fragment. One can add them, though, in a system that can handle first order logic, such as the Heterogeneous toolset (Hets); for instance, where in OWL one can add only “overlap” as a primitive relation (vocabulary element without definition), we can take such a theory and declare that definition:

logic CASL.FOL
ontology theory20 =
then %wdef
. forall x,y:Thing . O(x,y) <=> exists z:Thing (P(z,x) /\ P(z,y)) %(t21)
. forall x,y:Thing . EQ(x,y) <=> P(x,y) /\ P(y,x) %(t22)

As last example, let me illustrate the notion of the conflict resolution. Consider theory19—ground mereology, partially—that is within OWL 2 EL expressivity and theory18—also ground mereology, partially—that is within OWL 2 DL expressivity. So, they can’t be the same; the difference is that theory18 has parthood reflexive and transitive and proper parthood asymmetric and irreflexive, whereas theory19 has both parthood and proper parthood transitive. What happens if one aligns the ontologies that contain these theories, say, O1 (with theory18) and O2 (with theory19)? The Owl classifier provides easy pinpointing and tells you the profile: OWL 2 full (or: first order logic, or: beyond OWL 2 DL—top row) and why (bottom section):

Now, what can one do? The conflict resolution cannot be fully automated, because it depends on what the modeller wants or needs, but there’s enough data generated already and there are known trade-offs so that it is possible to describe the consequences:

  • Choose the O1 axioms (with irreflexivity and asymmetry on proper part of), which will make the ontology interoperable with other ontologies in OWL 2 DL, FOL or HOL.
  • Choose O2’s axioms (with transitivity on part of and proper part of), which will facilitate linking to ontologies in OWL 2 RL, 2 EL, 2 DL, FOL, and HOL.
  • Choose to keep both sets will result in an OWL 2 Full ontology that is undecidable, and it is then compatible only with FOL and HOL ontologies.

As serious final note: there’s still fun to be had on the logic side of things with countermodels and sub-networks and such, and with refining the conflict resolution to assist ontology engineers better. (or: TBC)

As less serious final note: the working title of early drafts of the paper was “DOLifying mereo(topo)logy”, but at some point we chickened out and let go of that frivolity.



[1] Keet, C.M., Kutz, O. Orchestrating a Network of Mereo(topo)logical Theories. Ninth International Conference on Knowledge Capture (K-CAP’17), Austin, Texas, USA, December 4-6, 2017. ACM Proceedings.


Part-whole relations and foundational ontologies

Part-whole relations seem like a never-ending story—and it still doesn’t bore me. In this case, the ingredients were the taxonomy of part-whole relations [1] and a couple of foundational ontologies and the aim was to link the former to the latter. But what started off with the intention to write just a short workshop note, for seemingly clear and just in need of actually doing it, turned out to be not so straightforward after all. The selected foundational ontologies were not as compatible as assumed, and creating the corresponding orchestration of OWL files was a ‘non-trivial exercise’.

What were (some of) the issues? On the one hand, there are multiple part-whole relations, which are typically named differently when they have a specific domain or range. For instance, to relate a process to a sub-process (e.g., eating involves chewing), to relate a region to a region it contains, relating portions of stuff, and so on. Those relations are fairly well established in the literature. What they do demand for, however, is clarity as to what those categories really are. For instance, with the process example, is that to be understood as Process as meant in the DOLCE ontology, or, say, Process in BFO? What if a foundational ontology does not have a category needed for a commonly used part-whole relation?

The first step to answer such questions was to assess several foundational ontologies on 1) which of the part-whole relations they have now, and which categories are present that are needed for the domain and range declarations for those common part-whole relations. I assessed that for DOLCE, BFO, GFO, SUMO, GIST, and YAMATO. This foundational ontology comparison is summarised in tables 1 and 2 in the paper that emanated from the assessment [2], entitled “A note on the compatibility of part-whole relations with foundational ontologies” that I recently presented at FOUST-II: 2nd Workshop on Foundational Ontology, Joint Ontology Workshops 2017 in Bolzano, Italy. In short: none fits perfectly for various reasons, but there are more and less suitable ontologies for a possible alignment. DOLCE and SUMO were evaluated to have the best approximations. It appeared at the workshops presentation’s Q&A session, where two of the DOLCE developers were present, that the missing Collective was an oversight, or: the ontology is incomplete and it was not an explicit design choice to exclude it. This, then, would make DOLCE the best/easiest fit.

I’ll save you the trials and tribulations creating the orchestrated OWL files. The part-whole relations, their inverses, and their proper parthood versions were manually linked to modules of DOLCE and SUMO, and automatically linked to BFO and GFO. That was an addition of 49 relations (OWL object properties) and 121 logical axioms, which were then extended further with another 11 mereotopological relations and its 16 logical axioms. These files are accessible online directly here and also listed with brief descriptions.

While there is something usable now and, by design at least, these files are reusable as well, what it also highlighted is that there are still some outstanding questions, as there already were for the top-level categories of previously aligned foundational ontologies [3]. For instance, some categories seem the same, but they’re in ‘incompatible’ parts of the taxonomy (located in disjoint branches), so then either not the same after all, or this happened unintentionally. Only GIST has been updated recently, and it may be useful if the others foundational ontologies were to be as well, so as to obtain clarity on these issues. The full interaction of part-whole relations with classical mereology is not quite clear either: there are various extensions and deviations, such as specifically for portions [4,5], but one for processes may be interesting as well. Not that such prospective theories would be usable as-is in OWL ontology development, but there are more expressive languages that start having tooling support where it could be an interesting avenue for future work. I’ll write more about the latter in an upcoming post (covering the K-CAP 2017 paper that was recently accepted).

On a last note: the Joint Ontology Workshops (JOWO 2017) was a great event. Some 100 ontologists from all over the world attended. There were good presentations, lively conversations, and it was great to meet up again with researchers I had not seen for years, finally meet people I knew only via email, and make new connections. It will not be an easy task to surpass this event next year at FOIS 2018 in Cape Town.




[1] Keet, C.M., Artale, A. Representing and Reasoning over a Taxonomy of Part-Whole Relations. Applied Ontology, 2008, 3(1-2):91-110.

[2] Keet, C.M. A note on the compatibility of part-whole relations with foundational ontologies. FOUST-II: 2nd Workshop on Foundational Ontology, Joint Ontology Workshops 2017, 21-23 September 2017, Bolzano, Italy. CEUR-WS Vol. (in print)

[3] Khan, Z.C., Keet, C.M. Foundational ontology mediation in ROMULUS. Knowledge Discovery, Knowledge Engineering and Knowledge Management: IC3K 2013 Selected Papers. A. Fred et al. (Eds.). Springer CCIS vol. 454, pp. 132-152, 2015. preprint

[4] Donnelly, M., Bittner, T. Summation relations and portions of stuff. Philosophical Studies, 2009, 143, 167-185.

[5] Keet, C.M. Relating some stuff to other stuff. 20th International Conference on Knowledge Engineering and Knowledge Management (EKAW’16). Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (Eds.). Springer LNAI vol. 10024, 368-383. 19-23 November 2016, Bologna, Italy.

On heterogeneous mappings between ontologies

Representing information and knowledge often can be done in different ways even when the same representation language is used. In some cases, one way of representing it is always better than another—or: the other option is sub-optimal or plain wrong—but in other cases the distinction is not all that clear-cut. For instance, whether to represent ‘Employee’ as a subclass of ‘Person’ or that it inheres in ‘Person’. Now, if two ontologies (or conceptual models) represent it differently but they have to be aligned, then how to find such different modelling patterns and how to align them? And, taking a step back: which alternate modelling patterns are there, and why those? We sought to answer these questions, whose outcome will be presented (and appear in the proceedings of [1]) the 14th Extended Semantic Web Conference (ESWC’17) that will take place later this month in Portoroz, Slovenia.

Setting aside the formal stuff in this blog post, let’s first have a look at some of those different modelling patterns. At it’s core, there are 1) modelling practices in ontologies vs conceptual models and 2) foundational [or: top-level, or upper] ontology guidance vs being ‘compacter’ in representing the knowledge. The generalisations of the following handwaivy examples are described in more detail in the paper, but for this blog post, it hopefully will do as a teaser of the six formalised patterns. Take, e.g., the following examples that are all variations on the same theme: to-reify-or-not-to-reify, where the example in B is further dressed up with content from a foundational ontology:

Indeed, in the examples, what is shown on the left-hand side does not have the exact same information content as what is shown on the right-hand side, but the underlying conceptualization is pretty much the same. The models on the right-hand side are more precise, for one has the opportunity to specify those, like stating that a particular marriage is between two persons (so, no group marriages allowed). Whether one always needs such more precise constraints is a separate matter.

Then there’s the Employee example mentioned in this post’s introduction with two alternate ways of representing it:

That is, a modeller chooses between representing the role an object performs/has as a subclass of that object or in a separate hierarchy of roles. Foundational ontologies take the latter option, domain ontologies the former.

These examples are instantiations of small modelling patterns (of which there may be more than the six formalised in the paper). To devise mappings between them, one ends up with alignments in such a way that they are between two patterns, rather than 1:1 mappings. To get there, we had to take some preliminary steps on how to represent it all formally, such as specifying the language for a pattern and a defining an ontology pattern alignment. This allowed us to formalise the patterns and devise that formal specification of the heterogeneous alignments.

That outcome, in turn, feeds into the alignment pattern search and checking algorithms. The algorithms show that it is feasible to find those patterns automatically, which then can propose possible alignments to the modeller, and that, upon aligning, one can check whether that’s done correctly. For instance, take the following two ontologies graphically represented in an (extended, enhanced) ICOM tool:

Two inter-ontology assertions have been made, pointed out with the two yellow arrows; i.e., ‘Tennis’ is a subclass of ‘Tournament’ and ‘TennisPlayer’ is a subclass of ‘Athlete’. The pattern search algorithm then will try to find instantiations for the small modelling patterns for alignment. Once something is found—in this case, pattern A fits—it will check whether all conditions for the alignment can be satisfied, and if so, it will propose a possible alignment, which is shown in the following illustrative figure:

Of interest here is, perhaps, the ‘new’ object property being proposed, indicated with the yellow arrow, that amounts to an equivalence to the partOf+Match+played. (That threesome can’t be mapped as equivalent to ‘participated’ due to differences in domain and range axioms, and drawing three subsumption lines from ‘participated’ to ‘part of’, ‘Match’, and ‘played’ is awkward.). The algorithms’ output then thus reduces the alignment into a final question to the modeller along the line of “are you ok with the alignment between the purple elements in the two diagrams?”, and accept or reject it. Please refer to the paper for further details.

The principles presented could possibly be used also for refactoring of an ontology, like in TDD [2] or when ‘preparing’ an ontology to align to a foundational ontology. More results on this topic are in the pipeline, and if you want to know now already, we can have a chat at ESWC.


[1] Fillottrani, P.R., Keet, C.M. Patterns for Heterogeneous TBox Mappings to Bridge Different Modelling Decisions. 14th Extended Semantic Web Conference (ESWC’17). Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (in print)

[2] Keet, C.M., Lawrynowicz, A. Test-Driven Development of Ontologies. In: Proceedings of the 13th Extended Semantic Web Conference (ESWC’16). Springer LNCS 9678, 642-657. 29 May – 2 June, 2016, Crete, Greece.

On that “shared” conceptualization and other definitions of an ontology

It’s a topic that never failed to generate a discussion on all 10 instalments of the ontology engineering course I taught from BSc(hons) up to participants studying toward or already having a PhD: those pesky definitions of what an ontology is. To top it off, like I didn’t know, I also got a snarky reviewer’s comment about it on my Stuff ontology paper [1]:

A comment that might be superficial but I cannot help: since an ontology is usually (in Borst’s terms) assumed to be a ‘shared’ conceptualization, I find a little surprising for such a complex model to have been designed by a sole author. While I acknowledge the huge amount of literature carefully analyzed, it still seems that the concrete modeling decisions eventually relied on the background of a single ontologist

Is that bad? Does that make the Stuff Ontology a ‘nontology’? And, by the by, what about all those loner philosophers who write single-author papers on ontology; should that whole field be discarded because most of the ontology insights were “shared” only from paper submission and publication?

Anyway, let’s start from the beginning. There’s the much-criticized definition of an ontology from Gruber that, it seems, only novices seem to keep quoting (to my irritation, indeed):

An ontology is a specification of a conceptualization. [2]

If you wonder why quite a bit has been written about it: try to answer what “specification” really means and how it is specified, and what exactly a “conceptualization” is. The real fun starts with Borst et al.’s [3] and then Studer et al.’s [4] refinement of Gruber’s version, which the reviewer quoted above alluded to:

An ontology is a formal, explicit specification of a shared conceptualization. [4]

At least there’s the “formal” (be it in the sense of logic or formal ontology), and “explicit”, so something is being made explicit and precise. But “shared”? Shared with whom? How? Is a logical theory that not one, but two, people write down an ontology, then? Or one person develops an ontology and then emails it to a few colleagues or puts it online in, say, the open BioPortal ontology repository. Does that count as “shared” then? Or is it only “shared” if at least one other person agrees with it as is (all reviewers of the Stuff Ontology did, btw), or perhaps (most or all of) the ‘conceptualization’ of it but a few axioms would need a bit of tweaking and cleaning up? Do you need at least a group of people to develop an ontology, and if so, how large should that group be, and should that group consist of independent sub-groups that adopt the ontology (and if so, how many endorsers)? Is a lightweight low-hanging-fruit ontology that is used by a large company a real or successful ontology, but a highly axiomatised ontology with a high tangledness that is used by a specialist organization, not? And even if you canvass and get a large group and/or organization to buy into that formal explicit specification, what if they are all wrong on the reality is supposed to represent? Does it still count as an ontology no matter how wrong the conceptualization is, just because it’s formal, explicit, and shared? Is a tailor-made module of, say, the DOLCE ontology not also an ontology, even if the module was made by one person and made available in an online repository like ROMULUS?

Perhaps one shouldn’t start top-down, but bottom-up: take some things and decide (who?) whether it is an ontology or not. Case one: the taxonomy of part-whole relations is a mini-ontology, and although at the start only ‘shared’ with my co-author and published in the Applied Ontology journal [5], it has been used by quite a few researchers for various (and unintended) purposes afterward, notably in NLP (e.g., [6]). An ontology? If so, since when? Case two: Noy et al. converted the representation of the NCI thesaurus into OWL DL [7]. Does changing the serialisation of a multi-authored thesaurus from one format into another make it an ontology? (more on that below.) Case three: a group of 5 people try to represent the subject domain of, say, breast cancer, but it is replete with mistakes both regarding the reality it ought to represent and unintended modelling errors (such as confusing is-a with part-of). Is it still an ontology, albeit a bad one?

It gets more muddled when the representation language is thrown in (as with case 2 above). What if the ontology turns out to be unsatisfiable? From a logic viewpoint, it’s not a theory then (a consistent set of sentences, is), but if it’s formal, explicit, and shared, is it acceptable that those people who developed the artefact simply have an inconsistent conceptualization and that it still counts as an ontology?

Horrocks et al. [8] simplify the whole thing by eliminating the ‘shared’ aspect:

an ontology being equivalent to a Description Logic knowledge base. [8]

However, this generates a set of questions and problems of its own that are practically also problematic. For instance: 1) whether transforming a UML Class Diagram into OWL ‘magically’ makes it an ontology (answer: no); 2) The NCI Thesaurus to OWL (answer: no); or 3) if you used, say, Common Logic to represent it, that then it could not be an ontology because it’s not formalised in Description Logics (answer: it sure can be one).

There are more attempts to give a definition or a description, notably by Nicola Guarino in [9] (a key paper in the field):

An ontology is a logical theory accounting for the intended meaning of a formal vocabulary, i.e. its ontological commitment to a particular conceptualization of the world. The intended models of a logical language using such a vocabulary are constrained by its ontological commitment. An ontology indirectly reflects this commitment (and the underlying conceptualization) by approximating these intended models. [9]

That’s a mouthful, but at least no “shared” in there, either. And, finally, among the many definitions in [10], here’s Barry Smith and cs.’s take on it:

An ONTOLOGY is a representational artifact, comprising a taxonomy as proper part, whose representational units are intended to designate some combination of universals, defined classes, and certain relations between them. [10]

And again, no “shared” either in this definition. Of course, also with Smith’s definition, there are things one can debate about and pose it against Guarino’s definition, like the “universals” vs. “conceptualization” etc., but that’s a story for another time.

So, to sum up: there is that problem on how to interpret “shared”, which is untenable, and one just as well can pick a definition of an ontology from a widely cited paper that doesn’t include that in the definition.

That said, all this doesn’t help my students to grapple with the notion of ‘an ontology’. Examples help, and it would be good if someone, or, say, the International Association for Ontology and its Applications (IAOA) would have a list of “exemplar ontologies” sooner rather than later. (Yes, I have a list, but it still needs to be annotated better). Another aspect that helps explaining it comes is from Guarino’s slides on going “from logical to ontological level” and on good and bad ontologies. This first screenshot (taken from my slides—easier to find) shows there’s “something more” to an ontology than just the logic, with a hint to reasons why (note to my students: more about that later in the course). The second screenshot shows that, yes, we can have the good, bad, and ugly: the yellow oval denotes the intended models (what it should be), and the other ovals denote the various approximations that one may have tried to represent in an ontology. For instance, representing ‘each human has exactly one brain’ is more precise (“good”) than stating ‘each human has at least one brain’ (“less good”) or not saying anything at all about it an ontology of human anatomy (“bad”), and even “worse” it would be if that ontology ware to state ‘each human has exactly two tails’.


Maybe we can’t do better than ‘intuition’ or ‘very wieldy explanation’. If this were a local installation of WordPress, I’d have added a poll on definitions and the subjectivity on the shared-ness factor (though knowing well that science isn’t governed as a democracy). In lieu of that: comments, preferences for one definition or the other, or any better suggestions for definitions are most welcome! (The next instalment of my Ontology Engineering course will start in a few week’s time.)



[1] Keet, C.M. A core ontology of macroscopic stuff. 19th International Conference on Knowledge Engineering and Knowledge Management (EKAW’14). K. Janowicz et al. (Eds.). 24-28 Nov, 2014, Linkoping, Sweden. Springer LNAI vol. 8876, 209-224.

[2] Gruber, T. R. A translation approach to portable ontology specifications. Knowledge Acquisition, 1993, 5(2):199-220.

[3] Borst, W.N., Akkermans, J.M. Engineering Ontologies. International Journal of Human-Computer Studies, 1997, 46(2-3):365-406.

[4] Studer, R., Benjamins, R., and Fensel, D. Knowledge engineering: Principles and methods. Data & Knowledge Engineering, 1998, 25(1-2):161-198.

[5] Keet, C.M., Artale, A. Representing and Reasoning over a Taxonomy of Part-Whole Relations. Applied Ontology, 2008, 3(1-2):91-110.

[6] Tandon, N., Hariman, C., Urbani, J., Rohrbach, A., Rohrbach, M., Weikum, G.: Commonsense in parts: Mining part-whole relations from the web and image tags. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16). pp. 243-250. AAAI Press (2016)

[7] Noy, N.F., de Coronado, S., Solbrig, H., Fragoso, G., Hartel, F.W., Musen, M. Representing the NCI Thesaurus in OWL DL: Modeling tools help modeling languages. Applied Ontology, 2008, 3(3):173-190.

[8] Horrocks, I., Patel-Schneider, P. F., and van Harmelen, F. From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics, 2003, 1(1):7.

[9] Guarino, N. (1998). Formal ontology and information systems. In Guarino, N., editor, Proceedings of Formal Ontology in Information Systems (FOIS’98), Frontiers in Artificial intelligence and Applications, pages 3-15. Amsterdam: IOS Press.

[10] Smith, B., Kusnierczyk, W., Schober, D., Ceusters, W. Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain. KR-MED 2006 “Biomedical Ontology in Action”. November 8, 2006, Baltimore, Maryland, USA.

Relations with roles / verbalising object properties in isiZulu

The narratives can be very different for the paper “A model for verbalising relations with roles in multiple languages” that was recently accepted paper at the 20th International Conference on Knowledge Engineering and Knowledge management (EKAW’16), for the paper makes a nice smoothie of the three ingredients of language, logic, and ontology. The natural language part zooms in on isiZulu as use case (possibly losing some ontologist or logician readers), then there are the logics about mapping the Description Logic DLR’s role components with OWL (lose possible interest of the natural language researchers), and a bit of philosophy (and lose most people…). It solves some thorny issues when trying to verbalise complicated verbs that we need for knowledge-to-text natural language generation in isiZulu and some other languages (e.g., German). And it solves the matching of logic-based representations popularised in mainly UML and ORM (that typically uses a logic in the DLR family of Description Logic languages) with the more commonly used OWL. The latter is even implemented as a Protégé plugin.

Let me start with some use-cases that cause problems that need to be solved. It is well-known that natural language renderings of ontologies facilitate communication with domain experts who are expected to model and validate the represented knowledge. This is doable for English, with ACE in the lead, but it isn’t for grammatically richer languages. There, there are complications, such as conjugation of verbs, an article that may be dependent on the preposition, or a preposition may modify the noun. For instance, works for, made by, located in, and is part of are quite common names for object properties in ontologies. They all do have a dependent preposition, however, there are different verb tenses, and the latter has a copulative and noun rather than just a verb. All that goes into the object properties name in an ‘English-based ontology’ and does not really have to be processed further in ontology verbalisation other than beautification. Not so in multiple other languages. For instance, the ‘in’ of located in ends up as affixes to the noun representing the object that the other object is located in. Like, imvilophu ‘envelope’ and emvilophini ‘in the envelope’ (locative underlined). Even something straightforward like a property eats can end up having to be conjugated differently depending on who’s eating: when a human eats, it is udla in isiZulu, but for, say, a dog, it is idla (modification underlined), which is driven by the system of noun classes, of which there are 17 in isiZulu. Many more examples illustrating different issues are described in the paper. To make a long story short, there are gradations in complicating effects, from no effect where a preposition can be squeezed in with the verb in naming an OP, to phonological conditioning, to modifying the article of the noun to modifying the noun. A ‘3rd pers. sg.’ may thus be context-dependent, and notions of prepositions may modify the verb or the noun or the article of the noun, or both. For a setting other than English ontologies (e.g., Greek, German, Lithuanian), a preposition may belong neither to the verb nor to the noun, but instead to the role that the object plays in the relation described by the verb in the sentence. For instance, one obtains yomuntu, rather than the basic noun umuntu, if it plays the role of the whole in a part-whole relation like in ‘heart is part of a human’ (inhliziyo iyingxenye yomuntu).

The question then becomes how to handle such a representation that also has to include roles? This is quite common in conceptual data modelling languages and in the DLR family of DL languages, which is known in ontology as positionalism [2]. Bumping up the role to an element in the representation language—thus, in addition to the relationship—enables one to attach information to it, like whether there is a (deep) preposition associated with it, the tense, or the case. Such role-based annotations can then be used to generate the right element, like einen Betrieb ‘some company’ to adjust the article for the case it goes with in German, or ya+umuntu=yomuntu ‘of a human’, modifying the noun in the object position in the sentence.

To get this working properly, with a solid theoretical foundation, we reused a part of the conceptual modelling languages’ metamodel [3] to create a language model for such annotations, in particular regarding the attributes of the classes in the metamodel. On its own, however, it is rather isolated and not immediately useful for ontologies that we set out to be in need of verbalising. To this end, it links to the ‘OWL way of representing relations’ (ontologically: the so-called standard view), and we separate out the logic-based representation from the readings that one can generate with the structured representation of the knowledge. All in all, the simplified high-level model looks like the picture below.

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

That much for the conceptual part; more details are described in the paper.

Just a fluffy colourful diagram isn’t enough for a solid implementation, however. To this end, we mapped one of the logics that adhere to positionalism to one of the standard view, being DLR [4] and OWL, respectively. It equally well could have been done for other pairs of languages (e.g., with Common Logic), but these two are more popular in terms of theory and tools.

Having the conceptual and logical foundations in place, we did implement it to see whether it actually can be done and to check whether the theory was sufficient. The Protégé plugin is called iMPALA—it could be an abbreviation for ‘Model for Positionalism And Language Annotation’—that both writes all the non-OWL annotations in a separate XML file and takes care of the renderings in Protégé. It works; yay. Specifically, it handles the interaction between the OWL file, the positionalist elements, and the annotations/attributes, plus the additional feature that one can add new linguistic annotation properties, so as to cater for extensibility. Here are a few screenshots:

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

The prey role in the axiom of the impala being eaten by the ibhubesi.

The prey role in the axiom of the impala being eaten by the ibhubesi.

 Annotations of the prey role itself, which is a role in the relationship ukudla.

Annotations of the prey role itself, which is a role in the relationship ukudla.

We did test it a bit, from just the regular feature testing to the African Wildlife ontology that was translated into isiZulu (spoken in South Africa) and a people and pets ontology in ciShona (spoken in Zimbabwe). These details are available in the online supplementary material.

The next step is to tie it all together, being the verbalisation patterns for isiZulu [5,6] and the OWL ontologies to generate full sentences, correctly. This is set to happen soon (provided all the protests don’t mess up the planning too much). If you want to know more details that are not, or not clearly, in the paper, then please have a look at the project page of A Grammar engine for Nguni natural language interfaces (GeNi), or come visit EKAW16 that will be held from 21-23 November in Bologna, Italy, where I will present the paper.



[1] Keet, C.M., Chirema, T. A model for verbalising relations with roles in multiple languages. 20th International Conference on Knowledge Engineering and Knowledge Management EKAW’16). Springer LNAI, 19-23 November 2016, Bologna, Italy. (in print)

[2] Leo, J. Modeling relations. Journal of Philosophical Logic, 2008, 37:353-385.

[3] Keet, C.M., Fillottrani, P.R. An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data & Knowledge Engineering, 2015, 98:30-53.

[4] Calvanese, D., De Giacomo, G. The Description Logics Handbook: Theory, Implementation and Applications, chap. Expressive description logics, pp. 178-218. Cambridge University Press (2003).

[5] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2016, in print.

[6] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. Proceedings of the 9th International Natural Language Generation conference 2016 (INLG’16), Edinburgh, Scotland, Sept 2016. ACL, 174-183.

Automatically finding the feasible object property

Late last month I wrote about the updated taxonomy of part-whole relations and claimed it wasn’t such a big deal during the modeling process to have that many relations to choose from. Here I’ll back up that claim. Primarily, it is thanks to the ‘Foundational Ontology and Reasoner enhanced axiomatiZAtion’ (FORZA) approach which includes the Guided ENtity reuse and class Expression geneRATOR (GENERATOR) method that was implemented in the OntoPartS-2 tool [1]. The general idea of the GENERATOR method is depicted in the figure below, which outlines two scenarios: one in which the experts perform the authoring of their domain ontology with the help of a foundational ontology, and the other one without a foundational ontology.


I think the pictures are clearer than the following text, but some prefer text, so here goes the explanation attempt. Let’s start with scenario A on the left-hand side of the figure: a modeller has a domain ontology and a foundational ontology and she wants to relate class two domain classes (indicated with C and D) and thus needs to select some object property. The first step is, indeed, selecting C and D (e.g., Human and Heart in an anatomy ontology); this is step (1) in the Figure.

Then (step 2) there are those long red arrows, which indicate that somehow there has to be a way to deal with the alignment of Human and of Heart to the relevant categories in the foundational ontology. This ‘somehow’ can be either of the following three options: (i) the domain ontology was already aligned to the foundational ontology, so that step (2) is executed automatically in the background and the modeler need not to worry, (ii) she manually carries out the alignment (assuming she knows the foundational ontology well enough), or, more likely, (iii) she chooses to be guided by a decision diagram that is specific to the selected foundational ontology. In case of option (ii) or (iii), she can choose to save it permanently or just use it for the duration of the application of the method. Step (3) is an automated process that moves up in the taxonomy to find the possible object properties. Here is where an automated reasoner comes into the equation, which can step-wise retrieve the parent class, en passant relying on taxonomic classification that offers the most up-to-date class hierarchy (i.e., including implicit subsumptions) and therewith avoiding spurious candidates. From a modeller’s viewpoint, one thus only has to select which classes to relate, and, optionally, align the ontology, so that the software will do the rest, as each time it finds a domain and range axiom of a relationship in which the parents of C and D participate, it is marked as a candidate property to be used in the class expression. Finally, the candidate object properties are returned to the user (step 4).

While the figure shows only one foundational ontology, one equally well can use a separate relation ontology, like PW or PWMT, which is just an implementation variant of scenario A: the relation ontology is also traversed upwards and on each iteration, the base ontology class is matched against relational ontology to find relations where the (parent of the) class is defined in a domain and range axiom, also until the top is reached before returning candidate relations.

The second scenario with a domain ontology only is a simplified version of option A, where the alignment step is omitted. In Figure-B above, GENERATOR would return object properties W and R as options to choose from, which, when used, would not generate an inconsistency (in this part of the ontology, at least). Without this guidance, a modeler could, erroneously, select, say, object property S, which, if the branches are disjoint, would result in an inconsistency, and if not declared disjoint, move class C from the left-hand branch to the one in the middle, which may be an undesirable deduction.

For the Heart and Human example, these entities are, in DOLCE terminology, physical objects, so that it will return structural parthood or plain parthood, if the PW ontology is used as well. If, on the other hand, say, Vase and Clay would have been the classes selected from the domain ontology, then a constitution relation would be proposed (be this with DOLCE, PW, or, say, GFO), for Vase is a physical object and Clay an amount of matter. Or with Limpopo and South Africa, a tangential proper parthood would be proposed, because they are both geographic entities.

The approach without the reasoner and without the foundational ontology decision diagram was tested with users, and showed that such a tool (OntoPartS) made the ontology authoring more efficient and accurate [2], and that aligning to DOLCE was the main hurdle for not seeing even more impressive differences. This is addressed with OntoPartS-2, so it ought to work better. What still remains to be done, admittedly, is that larger usability study with the updated version OntoPartS-2. In the meantime: if you use it, please let us know your opinion.



[1] Keet, C.M., Khan, M.T., Ghidini, C. Ontology Authoring with FORZA. 22nd ACM International Conference on Information and Knowledge Management (CIKM’13). ACM proceedings, pp569-578. Oct. 27 – Nov. 1, 2013, San Francisco, USA.

[2] Keet, C.M., Fernandez-Reyes, F.C., Morales-Gonzalez, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

Reflections on ESWC 2016: where are the ontologies papers?

Although I did make notes of the presentations I attended at the 13th Extended Semantic Web Conference a fortnight ago, with the best intentions to write a conference report, it’s going to be an opinion piece of some sort, on ontology engineering, or, more precisely: the lack thereof at ESWC2016.

That there isn’t much on ontology research at ISWC over the past several years, I already knew, both from looking at the accepted papers and the grapevine, but ESWC was still known to be welcoming to ontology engineering. ESWC 2016, however, had only one “vocabularies, schemas, and ontologies” [yes, in that order] session (and one on reasoning), with only the paper by Agnieszka and me solidly in the ‘ontologies’/ontology engineering bracket, with new theory, a tool implementing it, experiments, and a methodology sketch [1]. The other two papers were more on using ontologies, in annotating documents and in question answering. My initial thought was: “ah, hm, bummer, so ESWC also shifted focus”. There also were few ontologists at the conference, so I wondered whether the others moved on to a non-LD related field, alike I did shift focus a bit thanks/due to funded projects in adjacent fields (I did try to get funds for ontology engineering projects, though).

To my surprise, however, it appeared that a whopping 27 papers had been submitted to the “vocabularies, schemas, and ontologies” track. It was just that only three had made it through the review process. Asking around a bit, the comments were sort of like when I was co-chair of the track for ESWC 2014: ‘meh’, not research (e.g., just developing a domain ontology), minor delta, need/relevance unclear. And looking again at my reviews for 2015 and 2016, in addition to those reasons: failing to consider relevant related work, or a lacking a comparison with related work (needed to demonstrate improvement), and/or some issues with the theory (formal stuff). So, are we to blame and ‘suicidal’ or become complacent and lazy? It’s not like the main problems have been solved and developing an ontology has become a piece of cake now, compared to, say, 10 years ago. And while it is somewhat tempting to do some paper/presentation bashing, I won’t go into specifics, other than that at two presentations I attended, where they did show a section of an ontology, there was even the novice error of confusing classes with instances.

Anyway, there used to be more ontology papers in earlier ESWCs. To check that subjective impression, I did a quick-and-dirty check of the previous 12 editions as well, of which 11 had named sessions. Here’s the overview of the number of ontology papers over the years (minus the first one as it did not have named sections):


The aggregates are a bit ‘dirty’ as the 2010 increase grouped ontologies together with reasoning (if done for 2016, we’d have made it to 6), as was 2007 a bit flexible on that, and 2015 had 3 ontologies papers + 3 ontology matching & summarization, so stretching it a bit in that direction, as was the case in 2013. The number of papers in 2006 is indeed that much, with sessions on ontology engineering (3 papers), ontology evaluation (3), ontology alignment (5), ontology evolution (3), and ontology learning (3). So, there is indeed a somewhat downward trend.

Admitted, ‘ontologies’ is over the initial hype and it probably now requires more preparation and work to come up with something sufficiently new than it was 10 years ago. Looking at the proceedings of 5 years ago rather, the 7 ontologies papers were definitely not trivial, and I still remember the one on removing redundancies [2], the introduction of two new matching evaluation measures and comparison with other methods [3], and automatically detecting related ontology versions [4]. Five ontology papers then had new theory and some experiments, and two had extensive experiments [5,6]. 2012 had 6 ontologies papers, some interesting, but something like the ‘SKOS survey’ is a dated thing (nice, but ESWC-level?) and ISOcat isn’t great (but I’m biased here, as I don’t like it that noun classes aren’t in there, and it is hard to access).

Now what? Work more/harder on ontology engineering if you don’t want to have it vanish from ESWC. That’s easier said than done, though. But I suppose it’s fair to say to not discard the ESWC venue as being ‘not an ontology venue anymore’, and instead use these six months to the deadline to work hard enough. Yet, who knows, maybe we are harder to ourselves when reviewing papers compared to other tracks. Either way, it is something to reflect upon, as an 11% acceptance rate for a track, like this year, isn’t great. ESWC16 in general had good papers and interesting discussions. While the parties don’t seem to be as big as they used to be, there sure is a good time to be had as well.


p.s.: Cretan village, where I stayed for the first time, was good and had a nice short walk on the beach to the conference hotel, but beware that the mosquitos absent from Knossos Hotel all flock to that place.



[1] Keet, C.M., Lawrynowicz, A. Test-Driven Development of Ontologies. In: Proceedings of the 13th Extended Semantic Web Conference (ESWC’16). Springer LNCS 9678, 642-657. 29 May – 2 June, 2016, Crete, Greece.

[2] Stephan Grimm and Jens Wissmann. Elimination of redundancy in ontologies. In: Proceedings of the 8th Extended Semantic Web Conference (ESWC’11). Heraklion, Crete, Greece, 29 May – 2 June 2011. Springer LNCS 6643, 260-274.

[3] Xing Niu, Haofen Wang, GangWu, Guilin Qi, and Yong Yu. Evaluating the Stability and Credibility of Ontology Matching Methods. In: Proceedings of the 8th Extended Semantic Web Conference (ESWC’11). Heraklion, Crete, Greece, 29 May – 2 June 2011. Springer LNCS 6643, 275-289.

[4] Carlo Alocca. Automatic Identification of Ontology Versions Using Machine Learning Techniques. In: Proceedings of the 8th Extended Semantic Web Conference (ESWC’11). Heraklion, Crete, Greece, 29 May – 2 June 2011. Springer LNCS 6643, 275-289.

[5] Keet, C.M. The use of foundational ontologies in ontology development: an empirical assessment. In: Proceedings of the 8th Extended Semantic Web Conference (ESWC’11). Heraklion, Crete, Greece, 29 May – 2 June 2011. Springer LNCS 6643, 321-335.

[6] Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu. How Matchable Are Four Thousand Ontologies on the Semantic Web. In: Proceedings of the 8th Extended Semantic Web Conference (ESWC’11). Heraklion, Crete, Greece, 29 May – 2 June 2011. Springer LNCS 6643, 290-304.