About modelling styles in ontologies

As any modeller will know, there are pieces of information or knowledge that can be represented in different ways. For instance, representing ‘marriage’ as class or as a ‘married to’ relationship, adding ‘address’ as an attribute or a class in one’s model, and whether ‘employee’ will be positioned as a subclass of ‘person’ or as a role that ‘person’ plays. In some cases, there a good ontological arguments to represent it in one way or the other, in other cases, that’s less clear, and in yet other cases, efficiency is king so that the most compact way of representing it is favoured. This leads to different design decisions in ontologies, which hampers ontology reuse and alignment and affects other tasks, such as evaluating competency questions over the ontology and verbalising ontologies.

When such choices are made consistently throughout the ontology, one may consider this to be a modelling style or representation style. If one then knows which style an ontology is in, it would simplify use and reuse of the ontology. But what exactly is a representation style?

While examples are easy to come by, shedding light on that intuitive notion turned out to be harder than it looked like. My co-author Pablo Fillottrani and I tried to disentangle it nonetheless, by characterising the inherent features and the dimensions by which a style may differ. This resulted in 28 different traits for the 10 identified dimensions.  For instance, the dimension “modular vs. monolithic” has three possible options: 1) ‘Monolithic’, where the ontology is stored in one file (no imports or mergers); 2) ‘Modular, external’, where at least one ontology is imported or merged, and it kept its URI (e.g., importing DOLCE into one’s domain ontology, not re-creating it there); 3) ‘Modular, internal’, where there’s at least one ontology import that’s based on having carved up the domain in the sense of decomposition of the domain (e.g., dividing up a domain into pizzas and drinks at pizzerias).  Other dimensions include, among others, the granularity of relations (many of few), how the hierarchy looks like, and attributes/data properties.

We tried to “eat our own dogfood” and applied the dimensions and traits to a set of 30 ontologies. This showed that it is feasible to do, although we needed two rounds to get to that stage—after the first round of parallel annotation, it turned out we had interpreted a few traits differently, and needed to refine the number of traits and be more precise in their descriptions (which we did). Perhaps unsurprising, some tendencies were observed, and we could identify three easily recognisable types of ontologies because most ontologies had clearly one or the other trait and similar values for sets of trait. Of course, there were also ontologies that were inherently “mixed” in the sense of having applied different and conflicting design decisions within the same ontology, or even included two choices. Coding up the results, we generated two spider diagrams that visualise that difference. Here’s one:

Details of the dimensions, traits, set-up and results of the evaluation, and discussion thereof have been published this week [1] and we’ll present it next month at the 1st Iberoamerican Conference on Knowledge Graphs and Semantic Web (KGSWC’19), in Villa Clara, Cuba, alongside 13 other papers on ontologies. I’m looking forward to it!

 

References

[1] Keet, C.M., Fillottrani, P.R.. Dimensions Affecting Representation Styles in Ontologies. 1st Iberoamerican conference on Knowledge Graphs and Semantic Web (KGSWC’19). Springer CCIS vol 1029, 186-200. 24-28 June 2019, Villa Clara, Cuba. Paper at Springer

Advertisement

Formalization of the unifying metamodel of UML, EER, and ORM

Last year Pablo Fillottrani and I introduced an ontology-driven unifying metamodel of the static, structural, entities of UML Class Diagrams (v2.4.1), ER, EER, ORM, and ORM2 in [1,2], which was informally motivated and described here. This now also includes the constraints and we have formalised it in First Order Predicate Logic to put some precision to the UML Class Diagram fragments and their associated textual constraints, which is described in the technical report of the metamodel formalization [3]. Besides having such precision for the sake of it, it is also useful for automated checking of inter-model assertions and computing model transformations, which we illustrated in our RuleML’14 paper earlier this year [4] (related blog post).

The ‘bummer’ of the formalization is that it probably requires an undecidable language, due to having formulae with five variables, counting quantifiers, and ternary predicates (see section 2.11 of the tech report for details). To facilitate various possible uses nevertheless, we therefore also made a slightly simpler OWL version of it (the modelling decisions are described in Section 3 of the technical report). Having that OWL version, it was easy to also generate a verbalisation of the OWL version of the metamodel (thanks to SWAT NL Tools) so as to facilitate reading of the ontology by the casually interested reader and the very interested one who doesn’t like logic.

Although our DST/MINCyT-funded South Africa-Argentina scientific collaboration project (entitled Ontology-driven unification of conceptual data modelling languages) is officially in its last few months by now, more results are in the pipeline, which I hope to report on shortly.

References

[1] Keet, C.M., Fillottrani, P.R. Toward an ontology-driven unifying metamodel for UML Class Diagrams, EER, and ORM2. 32nd International Conference on Conceptual Modeling (ER’13). 11-13 November, 2013, Hong Kong. Springer LNCS vol 8217, 313-326.

[2] Keet, C.M., Fillottrani, P.R. Structural entities of an ontology-driven unifying metamodel for UML, EER, and ORM2. 3rd International Conference on Model & Data Engineering (MEDI’13). September 25-27, 2013, Amantea, Calabria, Italy. Springer LNCS (in print).

[3] Fillottrani, P.R., Keet, C.M. KF metamodel formalization. Technical report, Arxiv.org http://arxiv.org/abs/1412.6545. Dec 19, 2014, 26p.

[4] Fillottrani, P.R., Keet, C.M. Conceptual Model Interoperability: a Metamodel-driven Approach. 8th International Web Rule Symposium (RuleML’14), A. Bikakis et al. (Eds.). Springer LNCS 8620, 52-66. August 18-20, 2014, Prague, Czech Republic.