(update 30-7-2020: more details are described in the journal article published in the Journal of Biomedical Semantics)
There are several tutorial ontologies, which typically focus on illustrating one or two aspects of ontology development, notably language features and automated reasoning. This may suffice for one’s aims, but for an ontology engineering course, one would need to be able to illustrate a myriad of development factors and devise exercises for a wider range of tasks of ontology development. For instance, to illustrate the use of ontology design patterns, competency questions, foundational ontologies, and science-based modelling practices, neither of which is addressed easily by the popular tutorial ontologies (notably: wine and pizza), perhaps because they predate most of the advances made in ontology engineering research. Also, I have noticed that my students replicate examples from the exercises they carry out and from inspecting popular and easy-to-find ontologies. Marking the practical assignments, I got to see sandwich and ice cream and burger ontologies with toppings and value partitions, and software and mobile phone ontologies where laptop models are instances rather than classes. Not providing good and versatile examples holistically, causes the propagation of sub-optimal ontology development at least in the exercises, which then also may affect negatively the development of an operational domain ontology that the graduates may have to develop later on.
I’ve been exploring alternatives and variants over the past 11 years in the ontology engineering courses that I have taught yearly to about 8-40 students/year. In an attempt to systematise and possibly generalise from that, I’ve identified 22 requirements that contribute to a good tutorial ontology, which concern the suitability of the subject domain (7 factors), the ease of demonstrating logics and reasoning tasks (7), and assistance with demonstrating engineering aspects (8). Its details are described in a technical report [1]. I don’t claim that it’s an exhaustive list, but that it is one that may help someone to develop their own tutorial ontology in a fun or interesting topic if they so wish—after all, not everyone is interested in pizzas, wines, African wildlife, pets, shirts, a small university, or Robert Stevens’ family.
I’ve tried out a variety of extant tutorial ontologies as well as a range of versions of the African Wildlife Ontology (AWO) over the years (early experiences), eventually settling for a set of 14 versions, all the way from the example from the Primer [2] to DOLCE- and BFO-aligned to translated in several languages, and some with possible answers to some of the exercises. A graphical rendering of the main classes and relations is shown in the following figure:
The versions of the AWO are summarised in the following table, which is also mentioned as annotation in the OWL files.
The AWO meets a majority of the 22 requirements, is mature by now, and it has been used yearly in an ontology engineering course or tutorial since 2010. Also, it is links up with my ontology engineering textbook with relevant examples and exercises. The AWO provides a wide range of options concerning examples and exercises for ontology engineering well beyond illustrating only logic features and automated reasoning. For instance, it assists in demonstrating tasks about ontology quality, such as alignment to a foundational ontology and satisfying competency questions, versioning, and multilingual ontologies. For instance, it is easier to demonstrate alignment of a class Animal to DOLCE’s (Non-Agentive) Physical Object than, say, debating what Algorithm aligns with or descend into political debates on the gender binary or what constitutes a family. One can use the height or the colours of the plants and animals to discuss how to model attributes as qualities or dependent entities cf. OWL’s data properties or an artificial ValuePartition. Declare, say, de individual lion simba as an instance of Lion, rather than the confusion regarding grape varieties. Use intuitively obvious disjointness between animals and plants, and subsequently easy catches on sensitising modellers to the far-reaching effects of declaring domain and range axioms by first asserting that animals eat animals, and then adding that carnivorous plants eat insects. In addition, it links up easily to topics for ontology integration activities, such as with biodiversity data, wildlife trade, and tourism to create, e.g., an OBDA system with freely available data (e.g., taken from here) or an ontology-enhanced website for an organisation that offers environmentally sustainable safaris. More examples of broad usage options are described in section 2.3 in the tech report.
The AWO is freely available under a CC-BY licence through the textbook’s webpage at https://people.cs.uct.ac.za/~mkeet/OEbook/ in this folder. A more comprehensive description of the requirements, design, and content is described in a technical report [1] for the time being.
References
[1] Keet, CM. The African Wildlife Ontology tutorial ontologies: requirements, design, and content. Technical Report 1905.09519. 23 May 2019. https://arxiv.org/abs/1905.09519.
[2] Antoniou, G., van Harmelen, F. A Semantic Web Primer. MIT Press, USA. 2003.