When the robots come rolling, or just trickling or seeping or slowly creeping, into daily life, I want them to be culturally aware, give contextually relevant responses, and to do that in a language that the user can understand and speak well. Currently, they don’t. Since I work and in live in South Africa, then what does all that mean for the Southern Africa context? Would social robot use case scenarios be different here than in the Global North where most of the robot research and development is happening, and if so, how? What is meant with contextually relevant responses? Which language(s) should the robot communicate in?
The question of which languages is the easiest to answer: those spoken in this region, which are mainly those in the Niger-Congo B [NCB] (aka ‘Bantu’) family of languages, and then also Portuguese, French, Afrikaans, and English. I’ve been working on theory and tools for NCB languages, and isiZulu in particular (and some isiXhosa and Runyankore), whose research was mainly as part of the two NRF-funded projects GeNI and MoReNL. However, if we don’t know how that human-robot interaction occurs in which setting, we won’t know whether the algorithms designed so far can also be used for that, which may well be beyond the ontology verbalisation, a patient’s medicine prescription generation, weather forecasts, or language learning exercises that we roughly got covered for the controlled language and natural language generation aspects of it.
So then what about those use case scenarios and contextually relevant responses? Let me first give an example of the latter. A few years ago in one of the social issues and professional practice lectures I was teaching, I brought in the Amazon Echo to illustrate precisely that as well as privacy issues with Alexa and digital assistants (‘robot secretaries’) in general. Upon asking “What is the EFF?”, the whole class—some 300 students present at the time—was expecting that Alexa would respond with something like “The EFF is the economic freedom fighters, a political party in South Africa”. Instead, Alexa fetched the international/US-based answer and responded with “The EFF is the electronic frontier foundation” that the class had never heard of and that EFF doesn’t really do anything in South Africa (it does pass the revue later on in the module nonetheless, btw). There’s plenty of online content about the EFF as political party, yet Alexa chose to ignore that and prioritise information from elsewhere. Go figure with lots of other information that has limited online presence and doesn’t score high in the search engine results because there are fewer queries about it. How to get the right answer in those cases is not my problem (area of expertise), but I take that a solved black box and zoom in on the natural language aspects to automatically generate a sentence that has the answer taken from some structured data or knowledge.
The other aspect of this instance, is that the interactions both during and after the lecture was not a 1:1 interaction of students with their own version of Siri or Cortana and the like, but eager and curious students came in teams, so a 1:m interaction. While that particular class is relatively large and was already split into two sessions, larger classes are also not uncommon in several Sub-Saharan countries: for secondary school class sizes, the SADC average is 23.55 learners per class (the world average is 17), with the lowest is Botswana (13.8 learners) and the highest in Malawi with a whopping 72.3 learners in a class, on average. An educational robot could well be a useful way to get out of that catch-22, and, given resource constraints, end up as a deployment scenario with a robot per study group, and that in a multilingual setting that permits code switching (going back and forth between different languages). While human-robot interaction experts still will need to do some contextual inquiries and such to get to the bottom of the exact requirements and sentences, this variation in use is on top of the hitherto know possible ways for educational robots.
Going beyond this sort of informal chatter, I tried to structure that a bit and narrowed it down to a requirements analysis for the natural language generation aspects of it. After some contextualisation, I principally used two main use cases to elucidate natural language generation requirements and assessed that against key advances in research and technologies for NCB languages. Very, very, briefly, any system will need to i) combine data-to-text and knowledge-to-text, ii) generate many more different types of sentences, including sentences for both written and spoken languages in the NCB languages that are grammatically rich and often agglutinating, and iii) process non-trivial numbers that is non-trivial to do for NCB languages because the surface realization of the numbers depend on the noun class of the noun that is being counted. At present, no system out there can do all of that. A condensed version of the analysis was recently accepted as a paper entitled Natural Language Generation Requirements for Social Robots in Sub-Saharan Africa [1], for the IST-Africa’21 conference, and it will be presented there next week at the virtual event, in the ‘next generation computing’ session no less, on Wednesday the 12th of May.

Probably none of you has ever heard of this conference. IST-Africa is yearly IT conference in Africa that aims to foster North-South and South-South networking, promote the academia->industry and academia->policy bridge-creation and knowledge transfer pipelines, and capacity building for paper writing and presentation. The topics covered are distinctly of regional relevance and, according to its call for papers, the “Technical, Policy, Social Implications Papers must present analysis of early/final Research or Implementation Project Results, or business, government, or societal sector Case Study”.
Why should I even bother with an event like that? It’s good to sometimes reflect on the context and ponder about relevance of one’s research—after all, part of the university’s income (and thus my salary) and a large part of the research project funding I have received so far comes ultimately from the taxpayers. South African tax payers, to be more precise; not the taxpayers of the Global North. I can ‘advertise’, ahem, my research area and its progress to a regional audience. Also, I don’t expect that the average scientist in the Global North would care about HRI in Africa and even less so for NCB languages, but the analysis needed to be done and papers equate brownie points. Also, if everyone thinks to better not participate in something locally or regionally, it won’t ever become a vibrant network of research, applied research, and technology. I’ve attended the event once, in 2018 when we had a paper on error correction for isiZulu spellcheckers, and from my researcher viewpoint, it was useful for networking and ‘shopping’ for interesting problems that I may be able to solve, based on other participants’ case studies and inquiries.
Time will tell whether attending that event then and now this paper and online attendance will be time wasted or well spent. Unlike the papers on the isiZulu spellcheckers that reported research and concrete results that a tech company easily could take up (feel free to do so), this is a ‘fluffy’ paper, but exploring the use of robots in Africa was an interesting activity to do, I learned a few things along the way, it will save other interested people time in the analysis phase, and hopefully it also will generate some interest and discussion about what sort of robots we’d want and what they could or should be doing to assist, rather than replace, humans.
p.s.: if you still were to think that there are no robots in Africa and deem all this to be irrelevant: besides robots in the automotive and mining industries by, e.g., Robotic Innovations and Robotic Handling Systems, there are robots in education (also in Cape Town, by RD-9), robot butlers in hotels that serve quarantined people with mild COVID-19 in Johannesburg, they’re used for COVID-19 screening in Rwanda, and the Naledi personal banking app by Botlhale, to name but a few examples. Other tools are moving in that direction, such as, among others, Awezamed’s use of speech synthesis with (canned) text in isiZulu, isiXhosa and Afrikaans and there’s of course my research group where we look into knowledge-to-text text generation in African languages.
References
[1] Keet, C.M. Natural Language Generation Requirements for Social Robots in Sub-Saharan Africa. IST-Africa 2021, 10-14 May 2021, online. in print.