Semantic interoperability of conceptual data modelling languages: FaCIL

Software systems aren’t getting any less complex to design, implement, and maintain, which applies to both the numerous diverse components and the myriad of people involved in the development processes. Even a straightforward configuration of a data­base back-end and an object-oriented front-end tool requires coordination among database analysts, programmers, HCI people, and increasing involvement of domain experts and stakeholders. They each may prefer, and have different competencies in, certain specific design mechanisms; e.g., one may want EER for the database design, UML diagrams for the front-end app, and perhaps structured natural language sentences with SBVR or ORM for expressing the business rules. This requires multi-modal modelling in a plurality of paradigms. This would then need to be supported by hybrid tools that offer interoperability among those modelling languages, since such heterogeneity won’t go away any time soon, or ever.

Example of possible interactions between the various developers of a software system and the models they may be using.

It is far from trivial to have these people work together whilst maintaining their preferred view of a unified system’s design, let alone doing all this design in one system. In fact, there’s no such tool that can seamlessly render such varied models across multiple modelling languages whilst preserving the semantics. At best, there’s either only theory that aims to do that, or only a subset of the respective languages’ features, or a subset of the required combinations. Well, more precisely, until our efforts. We set out to fill this gap in functionality, both in a theoretically sound way and implemented as proof-of-concept to demonstrate its feasibility. The latest progress was recently published in the paper entitled A framework for interoperability with hybrid tools in the Journal of Intelligent Information Systems [1], in collaboration with Germán Braun and Pablo Fillottrani.

First, we propose the Framework for semantiC Interoperability of conceptual data modelling Languages, FaCIL, which serves as the core orchestration mechanism for hybrid modelling tools with relations between components and a workflow that uses them. At its centre, it has a metamodel that is used for the interchange between the various conceptual models represented in different languages and it has sets of rules to and from the metamodel (and at the metamodel level) to ensure the semantics is preserved when transforming a model in one language into a model in a different language and such that edits to one model automatically propagate correctly to the model in another language. In addition, thanks to the metamodel-based approach, logic-based reconstructions of the modelling languages also have become easier to manage, and so a path to automated reasoning is integrated in FaCIL as well.

This generic multi-modal modelling interoperability framework FaCIL was instantiated with a metamodel for UML Class Diagrams, EER, and ORM2 interoperability specifically [2] (introduced in 2015), called the KF metamodel [3] with its relevant rules (initial and implemented ones), an English controlled natural language, and a logic-based reconstruction into a fragment of OWL (orchestration graphically from the paper). This enables a range of different user interactions in the modelling process, of which an example of a possible workflow is shown in the following figure.

A sample workflow in the hybrid setting, showing interactions between visual conceptual data models (i.e., in their diagram version) and in their (pseudo-)natural language versions, with updates propagating to the others automatically. At the start (top), there’s a visual model in one’s preferred language from which a KF runtime model is generated. From there, it can go in various directions: verbalise, convert, or modify it. If the latter, then the KF runtime model is also updated and the changes are propagated to the other versions of the model, as often as needed. The elements in yellow/green/blue are thanks to FaCIL and the white ones are the usual tasks in the traditional one-off one-language modelling setting.

These theoretical foundations were implemented in the web-based crowd 2.0 tool (with source code). crowd 2.0 is the first hybrid tool of its kind, tying together all the pieces such that now, instead of partial or full manual model management of transformations and updates in multiple disparate tools, these tasks can be carried out automatically in one application and therewith also allow diverse developers and stakeholders to work from a shared single system.

We also describe a use case scenario for it – on Covid-19, as pretty much all of the work for this paper was done during the worse-than-today’s stage of the pandemic – that has lots of screenshots from the tool in action, both in the paper (starting here, with details halfway in this section) and more online.

Besides evaluating the framework with an instantiation, a proof-of-concept implementation of that instantiation, and a use case, it was also assessed against the reference framework for conceptual data modelling of Delcambre and co-authors [4] and shown to meet those requirements. Finally, crowd 2.0’s features were assessed against five relevant tools, considering the key requirements for hybrid tools, and shown to compare favourable against them (see Table 2 in the paper).

Distinct advantages can be summed up as follows, from those 26 pages of the paper, where the, in my opinion, most useful ones are underlined here, and the most promising ones to solve another set of related problems with conceptual data modelling (in one fell swoop!) in italics:

  • One system for related tasks, including visual and text-based modelling in multiple modelling languages, automated transformations and update propagation between the models, as well as verification of the model on coherence and consistency.
  • Any visual and text-based conceptual model interaction with the logic has to be maintained only in one place rather than for each conceptual modelling and controlled natural language separately;
  • A controlled natural language can be specified on the KF metamodel elements so that it then can be applied throughout the models regardless the visual language and therewith eliminating duplicate work of re-specifications for each modelling language and fragment thereof;
  • Any further model management, especially in the case of large models, such as abstraction and modularisation, can be specified either on the logic or on the KF metamodel in one place and propagate to other models accordingly, rather than re-inventing or reworking the algorithms for each language over and over again;
  • The modular design of the framework allows for extensions of each component, including more variants of visual languages, more controlled languages in your natural language of choice, or different logic-based reconstructions.

Of course, more can be done to make it even better, but it is a milestone of sorts: research into the  theoretical foundations of this particular line or research had commenced 10 years ago with the DST/MINCyT-funded bi-lateral project on ontology-driven unification of conceptual data modelling languages. Back then, we fantasised that, with more theory, we might get something like this sometime in the future. And we did.

References

[1] Germán Braun, Pablo Fillottrani, and C Maria Keet. A framework for interoperability with hybrid tools. Journal of Intelligent Information Systems, in print since 29 July 2022.

[2] Keet, C. M., & Fillottrani, P. R. (2015). An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data & Knowledge Engineering, 98, 30–53.

[3] Fillottrani, P.R., Keet, C.M. KF metamodel formalization. Technical Report, Arxiv.org http://arxiv.org/abs/1412.6545. Dec 19, 2014. 26p.

[4] Delcambre, L. M. L., Liddle, S. W., Pastor, O., & Storey, V. C. (2018). A reference framework for conceptual modeling. In: 37th International Conference on Conceptual Modeling (ER’18). LNCS. Springer, vol. 11157, 27–42.

Advertisement

Only answering competency questions is not enough to evaluate your ontology

How do you know whether the ontology you developed or want to reuse is any good? It’s not a new question. It has been investigated quite a bit, and so the answer to that is not a short one. Based on a number of anecdotes, however, it seems ever more people are leaning toward a short answer along the line of “it’ll be fine if it can answer my competency questions”.  That is most certainly not the right answer. Let me illustrate  this.

Here’s a set of 5 competency questions and a bad ontology (with the OWL file), being a newly mutilated version of the African Wildlife Ontology [1] modified with a popular South African pastime: the braai, i.e., a barbecue.

  • CQ1: Which animals are served at a barbecue? (Sample answers: kudu, impala,  warthog)
  • CQ2: What are the materials used for a barbecue? (Sample answers: tongs, skewers, poolbraai)
  • CQ3: What is the energy source for a braai device? (Sample answers: gas, coal)
  • CQ4: Which vegetables taste good with a braai? (Sample answers: tomatoes, onion, butternut)
  • CQ5: What food is eaten at a braai, or: what collection of edible things are offered?

The bad ontology does have answers to the competency questions, so a ‘CQs-only’ criterion for quality would suggest that the bad ontology is a good one. 100% good, even.

Why is it a bad one nonetheless?

That’s where years of methods, techniques, and tool development enter the stage (my textbook dedicates Section 5.2 to that), there are heuristics-based tips to prevent pitfalls [2] in general and for bio-ontologies with GoodOD, and there’s also a framework for ontology quality, OQuaRE [3], that all aim to approach this issue of quality systematically. Let’s have look at some of that.

Low-hanging fruit for a quick sanity check is to run the ontology through the Ontology Pitfall Scanner OOPS! [4]. Here’s the summary result, with two opened up that show what was flagged and why:

Mixing naming conventions is not neat. Examples of those in the badBBQ ontology are using CamelCase with PoolBraai but dash in tasty-plant and spaces converted to underscores in Food_Preparation_Material, and lower-case for some classes and upper case for others (PoolBraai and plant). An example of unconnected ontology element is Site: the idea is that if it isn’t really used anywhere in the ontology, then maybe it shouldn’t be in the ontology, or you forgot to add something there and OOPS! points you to that. Pitfall P11 may be contested, but if at all possible, one really should add domain and range to the object property so as to minimise unintended models and make the ontology closer to the reality (or understanding thereof) one aims to present. For instance, surely eats should not have any of the braai equipment on the left-hand side in the domain position, because equipment does not eat—only organisms do.

At the other end of the spectrum are the philosophy and Ontology-inspired methods. The most well-known one is OntoClean [5], which is summarised in the textbook and there’s a tutorial for it in Appendix A. The, perhaps, most straightforward (and simplified) rule within that package is that anti-rigid classes cannot subsume rigid classes, or, in layperson terminology: (physical) entities cannot be subclasses of things that are roles that entities play. Person cannot be a subclass of Employee, since not all persons are always employees. For the badBBQ: Food is a role that an organism or part thereof plays in a certain context, and animals and plants are not always food—they are organisms (or part thereof) irrespective of the roles they may play (or, worded differently: of the roles that they are the ‘bearer of’). 

Then there are the methods and tools in-between these two extremes. Take, for instance, Advocatus Diaboli / PEW (Possible World Explorer) [6], which helps you find places where disjointness axioms ought to be added. This is in the same line of thinking as adding those domain and range axioms: it helps you to be more precise and find mistakes. For instance, Site and BraaiEquipment are definitely intended to be disjoint: some location cannot be a concrete physical object. Adding the disjointness axiom results in an error, however: the PoolBraai is unsatisfiable because it was declared to be both a subclass of Site and of BraaiEquipment. Pool braais do exist, as there are braais that can be placed in or next to a pool. What the issue is here, is that there are two different meanings of the same term: once that device for the barbecue and once the ‘braai area by the pool’. That is, they are two different entities, not one, and so they either have to appear as two different entities in the ontology, with different names, or the intended one chosen and one of the subsumption axioms removed.

I also put some ugly things in the description of Braai: both those two ways of the source of heating and the member. While one may say informally that a braai involves a collection of things (CQ5), ontologically, it won’t fly with ‘member’. Membership is not arbitrary. There are foundational (or top-level) ontologies whose developers already did the heavy-lifting of ontological analysis of key elements and membership is one of them (see, among others, [7-9]). Such relations can simply be reused in one’s own ontology (e.g., imported from here), with their widely-agreed upon meaning; there’s even a tool to assist you with that [10]. If what you want is something else than that, then that relation is not membership but indeed something else. In this case, there are two options to fix it: 1) a braai as an event (rather than the device) will have objects (such as food, the tongs) participating in the event, or 2) for the braai as a device, it has accessories (related with has Accessory, if you will), such as the tongs, and it is used for preparing (/barbecuing/cooking/frying) food (/meals/dinners).

Then the source of heating. The one-off construct (with the {…}) is relatively popular in conceptual data modelling when you know the set of values is ever only allowed to be that, like the days of the week. But in our open world of ontologies, more just might be added or removed. And, ontologically, coal, gas, and electricity are not individuals, so also that is incorrect. The other option, with heatedBy xsd:String, has its own set of problems, largely because data properties with their data types entail application implementation decisions that ought not to be in an ontology that is supposed to be usable across multiple applications (see Section 6.1 ‘attributions’ for a longer explanation). It can be addressed by granting them their rightful status as classes in the OWL file and relating that to the braai.

This is not an exhaustive analysis of the badBBQ ontology, nor even close to a full list of the latest methods and techniques for good ontology development, but I hope I’ve illustrated my point about not relying on just CQs as evaluation of your ontology. Sample changes made to the badBBQ are included in the improvedBBQ OWL file. Here’s snapshot of the differences in the basic metrics (on the left). There’s room for another round of improvements, but I’ll leave that for later.

All this was not to say that competency questions are useless. They are not. They can be very useful to demarcate the scope of the ontology’s content, to keep on track with that since it’s easy to go astray from the intended scope once you begin or be subjected to scope creep, and to check whether at least the minimum content is in there somehow (and if not, why not). It’s the easy thing to check compared to the methods, techniques, and theory about good, sub-optimal, and bad ways of representing something. But such relative ease with CQs, perhaps unfortunately, does not mean it suffices to obtain a ‘good quality’ stamp of approval. Why the plethora of methods, techniques, theories, and tools aren’t used as often as they should, is a question I’d like to know the answer to, and may be a topic for another time.

References

[1] Keet, C.M. The African Wildlife Ontology tutorial ontologies. Journal of Biomedical Semantics, 2020, 11:4.

[2] Keet, C.M., Suárez-Figueroa, M.C., Poveda-Villalón, M. Pitfalls in Ontologies and TIPS to Prevent Them. Knowledge Discovery, Knowledge Engineering and Knowledge Management: IC3K 2013 Selected Papers. A. Fred et al. (Eds.). Springer CCIS vol. 454, pp. 115-131, 2015. preprint

[3] Duque-Ramos, A. et al. OQuaRE: A SQuaRE-based approach for evaluating the quality of ontologies. Journal of research and practice in information technology, 2011, 43(2): 159-176

[4] Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M. C.. OOPS!(Ontology Pitfall Scanner!): An on-line tool for ontology evaluation. International Journal on Semantic Web and Information Systems, 2014, 10(2): 7-34.

[5] Guarino, N., Welty,C. An overview of OntoClean. In S. Staab and R. Studer (Eds.), Handbook on Ontologies, pp 201-220. Springer Verlag, 2009.

[6] Ferré, S., Rudolph, S. Advocatus diaboli exploratory enrichment of ontologies with negative constraints. In A ten Teije et al., editors, 18th International Conference on Knowledge Engineering and Knowledge Management (EKAW’12), volume 7603 of LNAI, pages 42-56. Springer, 2012. Oct 8-12, Galway, Ireland.

[7] Keet, C.M. and Artale, A. Representing and Reasoning over a Taxonomy of Part-Whole Relations. Applied Ontology, 2008, 3(1-2): 91-110.

[8] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A. WonderWeb Deliverable D18–Ontology library. WonderWeb. 2003.

[9] Smith, B., et al. Relations in biomedical ontologies. Genome biology, 2005, 6.5: 1-15.

[10] Keet, C.M., Fernández-Reyes, F.C., Morales-González, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

Automatically simplifying an ontology with NOMSA

Ever wanted only to get the gist of the ontology rather than wading manually through thousands of axioms, or to extract only a section of an ontology for reuse? Then the NOMSA tool may provide the solution to your problem.

screenshot of NOMSA in action (deleting classes further than two levels down in the hierarchy in BFO)

There are quite a number of ways to create modules for a range of purposes [1]. We zoomed in on the notion of abstraction: how to remove all sorts of details and create a new ontology module of that. It’s a long-standing topic in computer science that returns every couple of years with another few tries. My first attempts date back to 2005 [2], which references modules & abstractions for conceptual models and logical theories to works published in the mid-1990s and, stretching the scope to granularity, to 1985, even. Those efforts, however, tend to halt at the theory stage or worked for one very specific scenario (e.g., clustering in ER diagrams). In this case, however, my former PhD student and now Senior Research at the CSIR, Zubeida Khan, went further and also devised the algorithms for five types of abstraction, implemented them for OWL ontologies, and evaluated them on various metrics.

The tool itself, NOMSA, was presented very briefly at the EKAW 2018 Posters & Demos session [3] and has supplementary material, such as the definitions and algorithms, a very short screencast and the source code. Five different ways of abstraction to generate ontology modules were implemented: i) removing participation constraints between classes (e.g., the ‘each X R at least one Y’ type of axioms), ii) removing vocabulary (e.g., remove all object properties to yield a bare taxonomy of classes), iii) keeping only a small number of levels in the hierarchy, iv) weightings based on how much some element is used (removing less-connected elements), and v) removing specific language profile features (e.g., qualified cardinality, object property characteristics).

In the meantime, we have added a categorisation of different ways of abstracting conceptual models and ontologies, a larger use case illustrating those five types of abstractions that were chosen for specification and implementation, and an evaluation to see how well the abstraction algorithms work on a set of published ontologies. It was all written up and polished in 2018. Then it took a while in the publication pipeline mixed with pandemic delays, but eventually it has emerged as a book chapter entitled Structuring abstraction to achieve ontology modularisation [4] in the book “Advanced Concepts, methods, and Applications in Semantic Computing” that was edited by Olawande Daramola and Thomas Moser, in January 2021.

Since I bought new video editing software for the ‘physically distanced learning’ that we’re in now at UCT, I decided to play a bit with the software’s features and record a more comprehensive screencast demo video. In the nearly 13 minutes, I illustrate NOMSA with four real ontologies, being the AWO tutorial ontology, BioTop top-domain ontology, BFO top-level ontology, and the Stuff core ontology. Here’s a screengrab from somewhere in the middle of the presentation, where I just automatically removed all 76 object properties from BioTop, with just one click of a button:

screengrab of the demo video

The embedded video (below) might keep it perhaps still readable with really good eyesight; else you can view it here in a separate tab.

The source code is available from Zubeida’s website (and I have a local copy as well). If you have any questions or suggestions, please feel free to contact either of us. Under the fair use clause, we also can share the book chapter that contains the details.

References

[1] Khan, Z.C., Keet, C.M. An empirically-based framework for ontology modularization. Applied Ontology, 2015, 10(3-4):171-195.

[2] Keet, C.M. Using abstractions to facilitate management of large ORM models and ontologies. International Workshop on Object-Role Modeling (ORM’05). Cyprus, 3-4 November 2005. In: OTM Workshops 2005. Halpin, T., Meersman, R. (eds.), LNCS 3762. Berlin: Springer-Verlag, 2005. pp603-612.

[3] Khan, Z.C., Keet, C.M. NOMSA: Automated modularisation for abstraction modules. Proceedings of the EKAW 2018 Posters and Demonstrations Session (EKAW’18). CEUR-WS vol. 2262, pp13-16. 12-16 Nov. 2018, Nancy, France.

[4] Khan, Z.C., Keet, C.M. Structuring abstraction to achieve ontology modularisation. Advanced Concepts, methods, and Applications in Semantic Computing. Daramola O, Moser T (Eds.). IGI Global. 2021, 296p. DOI: 10.4018/978-1-7998-6697-8.ch004

The ontological commitments embedded in a representation language

Just like programming language preferences generate heated debates, this happens every now and then with languages to represent ontologies as well. Passionate dislikes for description logics or limitations of OWL are not unheard of, in favour of, say, Common Logic for more expressiveness and a different notation style, or of OBO because of its graph-based fundamentals, or that abuse of UML Class Diagram syntax  won’t do as approximation of an OWL file. But what is really going on here? Are they practically all just the same anyway and modellers merely stick with, and defend, what they know? If you could design your pet language, what would it look like?

The short answer is: they are not all the same and interchangeable. There are actually ontological commitments baked into the language, even though in most cases this is not explicitly stated as such. The ‘things’ one has in the language indicate what the fundamental building blocks are in the world (also called “epistemological primitives” [1]) and therewith assume some philosophical stance. For instance, a crisp vs vague world (say, plain OWL or a fuzzy variant thereof) or whether parthood is such a special relation that it deserves its own primitive next to class subsumption (alike UML’s aggregation). Or maybe you want one type of class for things indicated with count nouns and another type of element for stuffs (substances generally denoted with mass nouns). This then raises the question as to what the sort of commitments are that are embedded in, or can go into, a language specification and that have an underlying philosophical point of view. This, in turn, raises the question about which philosophical stances actually can have a knock-on effect on the specification or selection of an ontology language.

My collaborator, Pablo Fillottrani, and I tried to answer these questions in the paper entitled An Analysis of Commitments in Ontology Language Design that was published late last year as part of the proceedings of the 11th Conference on Formal Ontology in Information Systems 2020 that was supposed to have been held in September 2020 in Bolzano, Italy. In the paper, we identified and analysed ontological commitments that are, or could have been, embedded in logics, and we showed how they have been taken for well-known languages for representing ontologies and similar artefacts, such as OBO, SKOS, OWL 2DL, DLRifd, and FOL. We organised them in four main categories: what the very fundamental furniture is (e.g., including roles or not, time), acknowledging refinements thereof (e.g., types of relations, types of classes), the logic’s interaction with natural language, and crisp vs various vagueness options. They are discussed over about 1/3 of the paper.

Obviously, engineering considerations can interfere in the design of the logic as well. They concern issues such as how the syntax should look like and whether scalability is an issue, but this is not the focus of the paper.

We did spend some time contextualising the language specification in an overall systematic engineering process of language design, which is summarised in the figure below (the paper focuses on the highlighted step).

(source: [2])

While such a process can be used for the design of a new logic, it also can be used for post hoc reconstructions of past design processes of extant logics and conceptual data modelling languages, and for choosing which one you want to use. At present, the documentation of the vast majority of published languages do not describe much of the ‘softer’ design rationales, though.  

We played with the design process to illustrate how it can work out, availing also of our requirements catalogue for ontology languages and we analysed several popular ontology languages on their commitments, which can be summed up as in the table shown below, also taken from the paper:

(source: [2])

In a roundabout way, it also suggests some explanations as to why some of those transformation algorithms aren’t always working well; e.g., any UML-to-OWL or OBO-to-OWL transformation algorithm is trying to shoe-horn one ontological commitment into another, and that can only be approximated, at best. Things have to be dropped (e.g., roles, due to standard view vs positionalism) or cannot be enforced (e.g., labels, due to natural language layer vs embedding of it in the logic), and that’ll cause some hick-ups here and there. Now you know why, and that won’t ever work well.

Hopefully, all this will feed into a way to help choosing a suitable language for the ontology one may want to develop, or assist with understanding better the language that you may be using, or perhaps gain new ideas for designing a new ontology language.

References

[1] Brachman R, Schmolze J. An overview of the KL-ONE Knowledge Representation System. Cognitive Science. 1985, 9:171–216.

[2] Fillottrani, P.R., Keet, C.M. An Analysis of Commitments in Ontology Language Design. Proc. of FOIS 2020. Brodaric, B. and Neuhaus, F. (Eds.). IOS Press. FAIA vol. 330, 46-60.

Toward a framework for resolving conflicts in ontologies (with COVID-19 examples)

Among the many tasks involved in developing an ontologies, are deciding what part of the subject domain to include, and how. This may involve selecting a foundational ontology, reuse of related domain ontologies, and more detailed decisions for ontology authoring for specific axioms and design patterns. A recent example of reuse is that of the Infectious Diseases Ontology for schistosomiasis knowledge [1], but even before reuse, one may have to assess differences among ontologies, as Haendel et al did for disease ontologies [2]. Put differently, even before throwing alignment tools at them or selecting one with an import statement and hope for the best, issues may arise. For instance, two relevant domain ontologies may have been aligned to different foundational ontologies, a partOf relation could be set to be transitive in one ontology but is also used in a qualified cardinality constraint in the other (so then one cannot use an OWL 2 DL reasoner anymore when the ontologies are combined), something like Infection may be represented as a class in one ontology but as a property infectedby in another, or the ontologies differ on the science, like whether Virus is an organism or an inanimate object.

What to do then?

Upfront, it helps to be cognizant of the different types of conflict that may arise, and understand what their causes are. Then one would want to be able to find those automatically. And, most importantly, get some assistance in how to resolve them; if possible, also even preventing conflicts from happening in the first place. This is what Rolf Grütter, from the Swiss Federal Research Institute WSL, and I have been working since he visited UCT last year. The first results have been accepted for the International Conference on Biomedical Ontologies (ICBO) 2020, which are described in a paper entitled “Towards a Framework for Meaning Negotiation and Conflict Resolution in Ontology Authoring” [3]. A sample scenario of the process is illustrated informally in the following figure.

Summary of a sample scenario of detecting and resolving conflicts, illustrated with an ontology reuse scenario where Onto2 will be imported into Onto1. (source: [3])

The paper first defines and illustrates the notions of meaning negotiation and conflict resolution and summarises their main causes, to then go into some detail of the various categories of conflicts and ways how to resolve them. The detection and resolution is assisted by the notion of a conflict set, which is a data structure that stores the details for further processing.

It was tested with a use case of an epizootic disease outbreak in the Lemanic Arc in Switzerland in 2006, due to H5N1 (avian influenza): an administrative ontology had to be merged with one about the epidemiology for infected birds and surveillance zones. With that use case in place already well before the spread of SARS-CoV-2 that caused the current pandemic, it was a small step to add a few examples to the paper about COVID-19. This was made possible thanks to recently developed relevant ontologies that were made available, including for COVID-19 specifically. Let’s highlight the examples here, also so that I can write a bit more about it than the terse text in the paper, since there are no page limits for a blog post.

Example 1: OWL profile violations

Medical terminologies tend to veer toward being represented in an ontology language that is less or equal to OWL 2 EL: this permits scalability, compatibility with typical OBO Foundry ontologies, as well as fitting with the popular SNOMED CT. As one may expect, there have been efforts in ontology development with content relevant for the current pandemic; e.g., the Coronavirus Infectious Disease Ontology (CIDO) [4]. The CIDO is not in OWL 2 EL, however: it has a class expressions with a universal quantifier (ObjectAllValuesFrom) on the right-hand side; specifically (in DL notation): ‘Yale New Haven Hospital SARS-CoV-2 assay’ \sqsubseteq \forall ‘EUA-authorized use at’.’FDA EUA-authorized organization’ or, in the Protégé interface:

(codes: CIDO_0000020, CIDO_0000024, and CIDO_0000031, respectively). It also imported many ontologies and either used them to cause some profile violations or the violations came with them, such as by having used the union operator (‘or’) in the following axiom for therapeutic vaccine function (VO_0000562):

How did I find that? Most certainly NOT by manually browsing through the more than 70000 axioms of the CIDO (including imports) to find the needle in the haystack. Instead, I burned the proverbial haystack to easily get the needles. In this case, the burning was done with the OWL Classifier, which automatically computes which axioms violate any of the OWL species, and lists them accordingly. Here are two examples, illustrating an OWL 2 EL violation (that aforementioned universal quantification) and an OWL 2 QL violation (a property chain with entities from BFO and RO); you can do likewise for OWL 2 RL violations.

Following the scenario with the assumption that the CIDO would have to stay in the OWL 2 EL profile, then it is easy to find the conflicting axioms and act accordingly, i.e., remove them. (It also indicates something did not go well with importing the NDF-RT.owl into the cido-base.owl, but that as an aside for this example.)

Example 2: Modelling issues: same idea, different elements

Let’s take the CIDO again and now also the COviD Ontology for cases and patient information (CODO), which have some overlapping and complementary information, so perhaps could be merged. A not unimportant thing is the test for SARS-CoV-2 and its outcome. CODO has a ‘laboratory test finding’ \equiv {positive, pending, negative}, i.e., the possible outcomes of the test are individuals made into a class using the ObjectOneOf constructor. Consulting CIDO for the test outcomes, it has a class ‘COVID-19 diagnosis’ with three subclasses: Negative, Positive, and Presumptive positive. Aside from the inexact matches of the test status that won’t simplify data integration efforts, this is an example of class vs. instance modeling of what is ontologically the same thing. Resolving this in any merging attempt means that either

  1. the CODO has to change and bump up the test results from individuals to classes, or
  2. the CIDO has to change the subclasses to individuals in the ABox, or
  3. take an ‘outside option’ and represent it in yet a different way where both the CODO and the CIDO have to modify the ontology (e.g., take a conceptual data modeling approach by making the test outcome an attribute with a few possible values).

The paper provides an attempt to systematize such type of conflicts toward a library of common types of conflict, so that it should become easier to find them, and offers steps toward a proper framework to manage all that, which assisted with devising generic approaches to resolution of conflicts. We already have done more to realize all that (which could not all be squeezed into the 12 pages), but more is still to be done, so stay tuned.

Since COVID-19 is still doing the rounds and the international borders of South Africa are still closed (with a lockdown for some 5 months already), I can’t end the blog post with the usual ‘I hope to see you at ICBO 2020 in Bolzano in September’—well, not in the common sense understanding at least. Hopefully next year then.

 

References

[1] Cisse PA, Camara G, Dembele JM, Lo M. An Ontological Model for the Annotation of Infectious Disease Simulation Models. In: Bassioni G, Kebe CMF, Gueye A, Ndiaye A, editors. Innovations and Interdisciplinary Solutions for Underserved Areas. Springer LNICST, vol. 296, 82–91. 2019.

[2] Haendel MA, McMurry JA, Relevo R, Mungall CJ, Robinson PN, Chute CG. A Census of Disease Ontologies. Annual Review of Biomedical Data Science, 2018, 1:305–331.

[3] Grütter R, Keet CM. Towards a Framework for Meaning Negotiation and Conflict Resolution in Ontology Authoring. 11th International Conference on Biomedical Ontologies (ICBO’20), 16-19 Sept 2020, Bolzano, Italy. CEUR-WS (in print).

[4] He Y, Yu H, Ong E, Wang Y, Liu Y, Huffman A, Huang H, Beverley J, Hur J, Yang X, Chen L, Omenn GS, Athey B, Smith B. CIDO, a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Scientific Data, 2020, 7:181.

DL notation plugin for Protégé 5.x

Once upon a time… the Protégé ontology development environment used Description Logic (DL) symbols and all was well—for some users at least. Then Manchester Syntax came along as the new kid on the block, using hearsay and opinion and some other authors’ preferences for an alternative rendering to the DL notation [1]. Subsequently, everyone who used Protégé was forced to deal with those new and untested keywords in the interface, like ‘some’ and ‘only’ and such, rather than the DL symbols. That had another unfortunate side-effect, being that it hampers internationalisation, for it jumbles up things rather awkwardly when your ontology vocabulary is not in English, like, say, “jirafa come only (oja or ramita)”. Even in the same English-as-first-language country, it turned out that under a controlled set-up, the DL axiom rendering in Protégé fared well in a fairly large sized experiment when compared to the Protégé interface with the sort of Manchester syntax with GUI [2], and also the OWL 2 RL rules rendering appear more positive in another (smaller) experiment [3]. Various HCI factors remain to be examined in more detail, though.

In the meantime, we didn’t fully reinstate the DL notation in Protégé in the way it was in Protégé v3.x from some 15 years ago, but with our new plugin, it will at least render the class expression in DL notation in the tool. This has the benefits that

  1. the modeller will receive immediate feedback during the authoring stage regarding a notation that may be more familiar to at least a knowledge engineer or expert modeller;
  2. it offers a natural language-independent rendering of the axioms with respect to the constructors, so that people may develop their ontology in their own language if they wish to do so, without being hampered by continuous code switching or the need for localisation; and
  3. it also may ease the transition from theory (logics) to implementation for ontology engineering novices.

Whether it needs to be integrated further among more components of the tabs and views in Protégé or other ODEs, is also a question for HCI experts to answer. The code for the DL plugin is open source, so you could extend it if you wish to do so.

The plugin itself is a jar file that can simply be dragged into the plugin folder of a Protégé installation (5.x); see the github repo for details. To illustrate it briefly, after dragging the jar file into the plugin folder, open Protégé, and add it as a view:

Then when you add some new axioms or load an ontology, select a class, and it will render all the axioms in DL notation, as shown in the following two screenshots form different ontologies:

For the sake of illustration, here’s the giraffe that eats only leaves or twigs, in the Spanish version of the African Wildlife Ontology:

The first version of the tool was developed by Michael Harrison and Larry Liu as part of their mini-project for the ontology engineering course in 2017, and it was brushed up for presentation beyond that just now by Michael Harrison (meanwhile an MSc student a CS@UCT), which was supported by a DOT4D grant to improve my textbook on ontology engineering and accompanying educational resources. We haven’t examined all possible ‘shapes’ that a class expression can take, but it definitely processes the commonly used features well. At the time of writing, we haven’t detected any errors.

p.s.: if you want your whole ontology exported at once in DL notation and to latex, for purposes of documentation generation, that is a different usage scenario and is already possible [4].

p.p.s.: if you want more DL notation, please let me know, and I’ll try to find more resources to make a v2 with more features.

References

[1] Matthew Horridge, Nicholas Drummond, John Goodwin, Alan Rector, Robert Stevens and Hai Wang (2006). The Manchester OWL syntax. OWL: Experiences and Directions (OWLED’06), Athens, Georgia, USA, 10-11 Nov 2016, CEUR-WS vol 216.

[2] E. Alharbi, J. Howse, G. Stapleton, A. Hamie and A. Touloumis. The efficacy of OWL and DL on user understanding of axioms and their entailments. The Semantic Web – ISWC 2017, C. d’Amato, M. Fernandez, V. Tamma, F. Lecue, P. Cudre-Mauroux, J. Sequeda, C. Lange and J. He (eds.). Springer 2017, pp20-36.

[3] M. K. Sarker, A. Krisnadhi, D. Carral and P. Hitzler, Rule-based OWL modeling with ROWLtab Protégé plugin. Proceedings of ESWC’17, E. Blomqvist, D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler and O. Hartig (eds.). Springer. 2017, pp 419-433.

[4] Cogan Shimizu, Pascal Hitzler, Matthew Horridge: Rendering OWL in Description Logic Syntax. ESWC (Satellite Events) 2017. Springer LNCS. pp109-113

An Ontology Engineering textbook

My first textbook “An Introduction to Ontology Engineering” (pdf) is just released as an open textbook. I have revised, updated, and extended my earlier lecture notes on ontology engineering, amounting to about 1/3 more new content cf. its predecessor. Its main aim is to provide an introductory overview of ontology engineering and its secondary aim is to provide hands-on experience in ontology development that illustrate the theory.

The contents and narrative is aimed at advanced undergraduate and postgraduate level in computing (e.g., as a semester-long course), and the book is structured accordingly. After an introductory chapter, there are three blocks:

  • Logic foundations for ontologies: languages (FOL, DLs, OWL species) and automated reasoning (principles and the basics of tableau);
  • Developing good ontologies with methods and methodologies, the top-down approach with foundational ontologies, and the bottom-up approach to extract as much useful content as possible from legacy material;
  • Advanced topics that has a selection of sub-topics: Ontology-Based Data Access, interactions between ontologies and natural languages, and advanced modelling with additional language features (fuzzy and temporal).

Each chapter has several review questions and exercises to explore one or more aspects of the theory, as well as descriptions of two assignments that require using several sub-topics at once. More information is available on the textbook’s page [also here] (including the links to the ontologies used in the exercises), or you can click here for the pdf (7MB).

Feedback is welcome, of course. Also, if you happen to use it in whole or in part for your course, I’d be grateful if you would let me know. Finally, if this textbook will be used half (or even a quarter) as much as the 2009/2010 blogposts have been visited (around 10K unique visitors since posting them), that would mean there are a lot of people learning about ontology engineering and then I’ll have achieved more than I hoped for.

UPDATE: meanwhile, it has been added to several open (text)book repositories, such as OpenUCT and the Open Textbook Archive, and it has been featured on unglue.it in the week of 13-8 (out of its 14K free ebooks).

Orchestrating 28 logical theories of mereo(topo)logy

Parts and wholes, again. This time it’s about the logic-aspects of theories of parthood (cf. aligning different hierarchies of (part-whole) relations and make them compatible with foundational ontologies). I intended to write this post before the Ninth Conference on Knowledge Capture (K-CAP 2017), where the paper describing the new material would be presented by my co-author, Oliver Kutz. Now, afterwards, I can add that “Orchestrating a Network of Mereo(topo) logical Theories” [1] even won the Best Paper Award. The novelties, in broad strokes, are that we figured out and structured some hitherto messy and confusing state of affairs, showed that one can do more than generally assumed especially with a new logics orchestration framework, and we proposed first steps toward conflict resolution to sort out expressivity and logic limitations trade-offs. Constructing a tweet-size “tl;dr” version of the contents is not easy, and as I have as much space here on my blog as I like, it ended up to be three paragraphs here: scene-setting, solution, and a few examples to illustrate some of it.

 

Problems

As ontologists know, parthood is used widely in ontologies across most subject domains, such as biomedicine, geographic information systems, architecture, and so on. Ontology (the philosophers) offer a parthood relation that has a bunch of computationally unpleasant properties that are structured in a plethora of mereologicial and meretopological theories such that it has become hard to see the forest for the trees. This is then complicated in practice because there are multiple logics of varying expressivity (support more or less language features), with the result that only certain fragments of the mereo(topo)logical theories can be represented. However, it’s mostly not clear what can be used when, during the ontology authoring stage one may want to have all those features so as to check correctness, and it’s not easy to predict what will happen when one aligns ontologies with different fragments of mereo(topo)logy.

 

Solution

We solved these problems by specifying a structured network of theories formulated in multiple logics that are glued together by the various linking constructs of the Distributed Ontology, Model, and Specification Language (DOL). The ‘structured network of theories’-part concerns all the maximal expressible fragments of the KGEMT mereotopological theory and five of its most well-recognised sub-theories (like GEM and MT) in the seven Description Logics-based OWL species, first-order logic, and higher order logic. The ‘glued together’-part refers to relating the resultant 28 theories within DOL (in Ontohub), which is a non-trivial (understatement, unfortunately) metalanguage that has the constructors for the glue, such as enabling one to declare to merge two theories/modules represented in different logics, extending a theory (ontology) with axioms that go beyond that language without messing up the original (expressivity-restricted) ontology, and more. Further, because the annoying thing of merging two ontologies/modules can be that the merged ontology may be in a different language than the two original ones, which is very hard to predict, we have a cute proof-of-concept tool so that it assists with steps toward resolution of language feature conflicts by pinpointing profile violations.

 

Examples

The paper describes nine mechanisms with DOL and the mereotopological theories. Here I’ll start with a simple one: we have Minimal Topology (MT) partially represented in OWL 2 EL/QL in “theory8” where the connection relation (C) is just reflexive (among other axioms; see table in the paper for details). Now what if we add connection’s symmetry, which results in “theory4”? First, we do this by not harming theory8, in DOL syntax (see also the ESSLI’16 tutorial):

logic OWL2.QL
ontology theory4 =
theory8
then
ObjectProperty: C Characteristics: Symmetric %(t7)

What is the logic of theory4? Still in OWL, and if so, which species? The Owl classifier shows the result:

 

Another case is that OWL does not let one define an object property; at best, one can add domain and range axioms and the occasional ‘characteristic’ (like aforementioned symmetry), for allowing arbitrary full definitions pushes it out of the decidable fragment. One can add them, though, in a system that can handle first order logic, such as the Heterogeneous toolset (Hets); for instance, where in OWL one can add only “overlap” as a primitive relation (vocabulary element without definition), we can take such a theory and declare that definition:

logic CASL.FOL
ontology theory20 =
theory6_plus_antisym_and_WS
then %wdef
. forall x,y:Thing . O(x,y) <=> exists z:Thing (P(z,x) /\ P(z,y)) %(t21)
. forall x,y:Thing . EQ(x,y) <=> P(x,y) /\ P(y,x) %(t22)

As last example, let me illustrate the notion of the conflict resolution. Consider theory19—ground mereology, partially—that is within OWL 2 EL expressivity and theory18—also ground mereology, partially—that is within OWL 2 DL expressivity. So, they can’t be the same; the difference is that theory18 has parthood reflexive and transitive and proper parthood asymmetric and irreflexive, whereas theory19 has both parthood and proper parthood transitive. What happens if one aligns the ontologies that contain these theories, say, O1 (with theory18) and O2 (with theory19)? The Owl classifier provides easy pinpointing and tells you the profile: OWL 2 full (or: first order logic, or: beyond OWL 2 DL—top row) and why (bottom section):

Now, what can one do? The conflict resolution cannot be fully automated, because it depends on what the modeller wants or needs, but there’s enough data generated already and there are known trade-offs so that it is possible to describe the consequences:

  • Choose the O1 axioms (with irreflexivity and asymmetry on proper part of), which will make the ontology interoperable with other ontologies in OWL 2 DL, FOL or HOL.
  • Choose O2’s axioms (with transitivity on part of and proper part of), which will facilitate linking to ontologies in OWL 2 RL, 2 EL, 2 DL, FOL, and HOL.
  • Choose to keep both sets will result in an OWL 2 Full ontology that is undecidable, and it is then compatible only with FOL and HOL ontologies.

As serious final note: there’s still fun to be had on the logic side of things with countermodels and sub-networks and such, and with refining the conflict resolution to assist ontology engineers better. (or: TBC)

As less serious final note: the working title of early drafts of the paper was “DOLifying mereo(topo)logy”, but at some point we chickened out and let go of that frivolity.

 

References

[1] Keet, C.M., Kutz, O. Orchestrating a Network of Mereo(topo)logical Theories. Ninth International Conference on Knowledge Capture (K-CAP’17), Austin, Texas, USA, December 4-6, 2017. ACM Proceedings.

Our ESWC17 demos: TDDonto2 and an OWL verbaliser for isiZulu

Besides the full paper on heterogeneous alignments for 14th Extended Semantic Web Conference (ESWC’17) that will take place next week in Portoroz, Slovenia, we also managed to squeeze out two demo papers. You may already know of TDDonto2 with Kieren Davies and Agnieszka Lawrynowicz, which was discussed in an earlier post that has been updated with a tutorial video. It now has a demo paper as well [1], which describes the rationale and a few scenarios. The other demo, with Musa Xakaza and Langa Khumalo, is new-new, but the regular reader might have seen it coming: we finally managed to link the verbalisation patterns for certain Description Logic axiom types [2,3] to those in OWL ontologies. The tool takes as input an ontology in isiZulu and the verbalisation algorithms, and out come the isiZulu sentences, be this in plain text for further processing or in a GUI for inspection by a domain expert [4]. There is a basic demo-screencast to show it’s all working.

The overall architecture may be of interest, for it deviates from most OWL verbalisers. It is shown in the following figure:

For instance, we use the Python-based OWL API Owlready, rather than a Java-based app, for Python is rather popular in NLP and the verbalisation algorithms may be used elsewhere as well. We made more such decisions with the aim to make whatever we did as multi-purpose usable as possible, like the list of nouns with noun classes (surprisingly, and annoyingly, there is no such readily available list yet, though isizulu.net probably will have it somewhere but inaccessible), verb roots, and exceptions in pluralisation. (Problems for integrating the verbaliser with, say, Protégé will be interesting to discuss during the demo session!)

The text-based output doesn’t look as nice as the GUI interface, so I will show here only the GUI interface, which is adorned with some annotations to illustrate that those verbalisation algorithms in the background are far from trivial templates:

For instance, while in English the universal quantification is always ‘Each’ or ‘All’ regardless the named class quantified over, in isiZulu it depends on the noun class of the noun that is the name of the OWL class. For instance, in the figure above, izingwe ‘leopards’ is in noun class 10, so the ‘Each/All’ is Zonke, amavazi ‘vases’ is in noun class 6, so ‘Each/All’ then becomes Onke, and abantu ‘people’/’humans’ is in noun class 2, making Bonke. There are 17 noun classes. They also determine the subject concords (SC, alike conjugation) for the verbs, with zi- for noun class 10, ­a- for noun class 6, and ba- for noun class 2, to name a few. How this all works is described in [2,3]. We’ve implemented all those algorithms and integrated the pluraliser [5] in it to make it work. The source files are available to check and play with already, you can do so and ask us during the ESWC17 demo session, and/or also have a look at the related outputs of the NRF-funded project Grammar Engine for Nguni natural language interfaces (GeNi).

 

References

[1] Davies, K. Keet, C.M., Lawrynowicz, A. TDDonto2: A Test-Driven Development Plugin for arbitrary TBox and ABox axioms. Extended Semantic Web Conference (ESWC’17), Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (demo paper)

[2] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2017, 51:131-157.

[3] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. 9th International Natural Language Generation conference (INLG’16), 5-8 September, 2016, Edinburgh, UK. Association for Computational Linguistics, 174-183.

[4] Keet, C.M. Xakaza, M., Khumalo, L. Verbalising OWL ontologies in isiZulu with Python. 14th Extended Semantic Web Conference (ESWC’17). Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (demo paper)

[5] Byamugisha, J., Keet, C.M., Khumalo, L. Pluralising Nouns in isiZulu and Related Languages. 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing’16), Springer LNCS. April 3-9, 2016, Konya, Turkey.

Improved! TDDonto v2—more types of axioms supported and better feedback

Yes, the title almost sounds like a silly washing powder ad, but version 2 of TDDonto really does more than the TDDonto tool for Test-Driven Development of ontologies [1,2] that was introduced earlier this year. There are two principal novelties, largely thanks to Kieren Davies (also at UCT): more types of axioms are supported—arbitrary class expressions on both sides of the inclusion and ABox assertions—and differentiated test feedback beyond just pass/fail/unknown. TDDonto2 obviously still uses a test-first approach rather than test-last for ontology authoring, i.e., checking whether the axiom is already entailed in the ontology or would cause problems before actually adding it, saving yourself a lot of classification time overhead in the ontology authoring process. 

On the first item, TDDonto (or TawnyOwl or Scone) could not handle, e.g., Carnivore \sqcup Herbivore \sqsubseteq Animal or some domain restriction \forall eats.Animal \sqsubseteq Carnivore , or whether some individual is different/same from another. TDDonto2 can. This required a new set of algorithms, some nifty orchestration of several functions offered by an automated reasoned (of the DL/OWL variety), and extending the Protégé 5 functionality with parsing Manchester syntax keyword constructs for individuals as well (another 3600 lines of code). The Protégé 5 plugin works. Correctness of those algorithms has been proven, so you can rely on it just like you can with the test-last approach of add-axiom-and-then-run-the-reasoner (I’ll save you from those details).

On the second item (and also beyond the current TDD tools): now it can tell you not only just ‘pass’ (i.e., the axiom is entailed), but the ‘failed’ has been refined into the various possible cases: that adding the axiom to the ontology would cause the ontology to become inconsistent, or that it would cause a class to become unsatisfiable (incoherent), or it may be neither of the three (absent) so it would be ‘safe’ to add the axiom under test to the ontology (that is: at least not cause inconsistency, incoherence, or redundancy). Further, we’ve added ‘pre-real TDD unit test’ checks: if the ontology is already inconsistent, there’s no point in testing the axiom; if the ontology already has unsatisfiable classes, then one should fix that first; and if there is an entity in the test axiom that is not in the ontology, then it should be added first.

The remainder of the post mainly just shows off some of the functionality in text and with screenshots (UPDATE 13-3-2017: we now also have a screencast tutorial [177MB mov file]). Put the JAR file in the plugins directory, and then put it somewhere via Window – Views – Ontology views – TDDonto2. As toy ontology, I tend to end up with examples of the African Wildlife Ontology, which I use for exercises in my Ontology Engineering course, but as it is almost summer holiday here, I’ve conjured up a different example. That test ontology contains the following knowledge at the start:

ServiceObject \equiv Facility \sqcup Attraction

Pool \sqsubseteq Facility

Braai \sqsubseteq Facility

Pool \sqcap Braai \sqsubseteq \bot

Hotel \sqsubseteq Accommodation

BedAndBreakfast \sqsubseteq Accommodation

BedAndBreakfast \sqcap Hotel \sqsubseteq \bot

Facility \sqsubseteq \exists offeredBy.Accommodation

Hotel \sqsubseteq =1 offers.Pool

Hotel(LagoonBeach)

The first test is to see whether \exists offeredBy.Accommodation \sqsubseteq Facility , to show that TDDonto2 can handle class expressions on the left-hand side of the inclusion axiom. It can, and it is clearly absent from the toy ontology; see screenshot below, first line in the middle section. Likewise for the second and third test, where a typical novice ontology authoring mixup is made between ‘and’ and ‘or’, which different test results: one is absent, the other entailed.

poolbraaimissingThen some more fun: the pool braai. First of all, PoolBraai is not in our ontology, so TDDonto2 returns an error: it can be seen from Protégé’s handling (red dotted line below PoolBraai and red-lined text box in the screenshot above), and TDDonto2 will not let you add it to the set of tests (pop-up box, not shown). After adding it and testing “PoolBraai SubClassOf: Pool and Braai”, then if we were to add that axiom to the ontology, it will be incoherent (because Pool and Braai are disjoint):

poolbraaiwillbeincoherentDoing this nonetheless by selecting the axiom and adding it to our ontology by pressing the “Add selected to ontology”:

poolbraaiaddedand running all tests again by pressing the “Evaluate all” button (or select it and click “Evaluate selected”), the results look like this:

poolbraaifailedpreconditionThat is, we failed a precondition, because PoolBraai is unsatisfiable, so no tests are being executed until this is fixed. Did I make this up just to have a silly toy ontology example? No, the pool braai does exist, in South Africa at least: it is a stainless steel barbecue table-set that one can place in a small backyard pool. So, we remove PoolBraai \sqsubseteq Pool \sqcap Braai from the ontology and add PoolBraai \sqsubseteq Braai , so that we can do a few more tests.

Let’s assume we want to explore more about accommodations and their facilities, and add some knowledge about that (tests 5-7):

accosomefacilitiesFinally, let’s check something about any instances in the ontology. First, whether LagoonBeach is a hotel “LagoonBeach Type: Hotel”, which it is (with a view on Table Mountain), and whether it also could be a B&B, which it cannot be, because hotel and B&B are disjoint. Adding another individual to the ontology for the sake of example, SinCity (an owl:Thing), we want to know whether SinCity can be the same as LagoonBeach, or asserted as different (the last two test in the list): the tests return absent, i.e., they can be either, for nothing is known about SinCity.

instances

Now let’s remove a selection of the tests because they would cause problems in the ontology, and add the remaining five in one go:

5addedThis change requires one to classify the ontology, and subsequently you’re expected to run all the tests again to check that they are all entailed and do not cause some new problem, which they don’t:

testagain

And, finally, a few arbitrary ones that are ontologically a bit off, but they show that yes, something arbitrary both on the left-hand side and right-hand side of the inclusion (or equivalence) works (first test, below), disjointness still works (test 2) and now also with arbitrary class expressions (test 5), and the same/different individuals can take more than two arguments (tests 3 and 4).

extras

The source code and JAR file are freely available (GPL licence) to use, examine, or extend. A paper with the details has been submitted, so you’ll have to make do with just the tool for the moment. If you have any feedback on the tool, please let us know.

 

References

[1] Keet, C.M., Lawrynowicz, A. Test-Driven Development of Ontologies. 13th Extended Semantic Web Conference (ESWC’16). H. Sack et al. (Eds.). Springer LNCS vol. 9678, pp642-657. 29 May – 2 June, 2016, Crete, Greece.

[2] Lawrynowicz, A., Keet, C.M. The TDDonto Tool for Test-Driven Development of DL Knowledge bases. 29th International Workshop on Description Logics (DL’16). April 22-25, Cape Town, South Africa. CEUR WS vol. 1577.