An Ontology Engineering textbook

My first textbook “An Introduction to Ontology Engineering” (pdf) is just released as an open textbook. I have revised, updated, and extended my earlier lecture notes on ontology engineering, amounting to about 1/3 more new content cf. its predecessor. Its main aim is to provide an introductory overview of ontology engineering and its secondary aim is to provide hands-on experience in ontology development that illustrate the theory.

The contents and narrative is aimed at advanced undergraduate and postgraduate level in computing (e.g., as a semester-long course), and the book is structured accordingly. After an introductory chapter, there are three blocks:

  • Logic foundations for ontologies: languages (FOL, DLs, OWL species) and automated reasoning (principles and the basics of tableau);
  • Developing good ontologies with methods and methodologies, the top-down approach with foundational ontologies, and the bottom-up approach to extract as much useful content as possible from legacy material;
  • Advanced topics that has a selection of sub-topics: Ontology-Based Data Access, interactions between ontologies and natural languages, and advanced modelling with additional language features (fuzzy and temporal).

Each chapter has several review questions and exercises to explore one or more aspects of the theory, as well as descriptions of two assignments that require using several sub-topics at once. More information is available on the textbook’s page [also here] (including the links to the ontologies used in the exercises), or you can click here for the pdf (7MB).

Feedback is welcome, of course. Also, if you happen to use it in whole or in part for your course, I’d be grateful if you would let me know. Finally, if this textbook will be used half (or even a quarter) as much as the 2009/2010 blogposts have been visited (around 10K unique visitors since posting them), that would mean there are a lot of people learning about ontology engineering and then I’ll have achieved more than I hoped for.

UPDATE: meanwhile, it has been added to several open (text)book repositories, such as OpenUCT and the Open Textbook Archive, and it has been featured on unglue.it in the week of 13-8 (out of its 14K free ebooks).

Advertisements

Orchestrating 28 logical theories of mereo(topo)logy

Parts and wholes, again. This time it’s about the logic-aspects of theories of parthood (cf. aligning different hierarchies of (part-whole) relations and make them compatible with foundational ontologies). I intended to write this post before the Ninth Conference on Knowledge Capture (K-CAP 2017), where the paper describing the new material would be presented by my co-author, Oliver Kutz. Now, afterwards, I can add that “Orchestrating a Network of Mereo(topo) logical Theories” [1] even won the Best Paper Award. The novelties, in broad strokes, are that we figured out and structured some hitherto messy and confusing state of affairs, showed that one can do more than generally assumed especially with a new logics orchestration framework, and we proposed first steps toward conflict resolution to sort out expressivity and logic limitations trade-offs. Constructing a tweet-size “tl;dr” version of the contents is not easy, and as I have as much space here on my blog as I like, it ended up to be three paragraphs here: scene-setting, solution, and a few examples to illustrate some of it.

 

Problems

As ontologists know, parthood is used widely in ontologies across most subject domains, such as biomedicine, geographic information systems, architecture, and so on. Ontology (the philosophers) offer a parthood relation that has a bunch of computationally unpleasant properties that are structured in a plethora of mereologicial and meretopological theories such that it has become hard to see the forest for the trees. This is then complicated in practice because there are multiple logics of varying expressivity (support more or less language features), with the result that only certain fragments of the mereo(topo)logical theories can be represented. However, it’s mostly not clear what can be used when, during the ontology authoring stage one may want to have all those features so as to check correctness, and it’s not easy to predict what will happen when one aligns ontologies with different fragments of mereo(topo)logy.

 

Solution

We solved these problems by specifying a structured network of theories formulated in multiple logics that are glued together by the various linking constructs of the Distributed Ontology, Model, and Specification Language (DOL). The ‘structured network of theories’-part concerns all the maximal expressible fragments of the KGEMT mereotopological theory and five of its most well-recognised sub-theories (like GEM and MT) in the seven Description Logics-based OWL species, first-order logic, and higher order logic. The ‘glued together’-part refers to relating the resultant 28 theories within DOL (in Ontohub), which is a non-trivial (understatement, unfortunately) metalanguage that has the constructors for the glue, such as enabling one to declare to merge two theories/modules represented in different logics, extending a theory (ontology) with axioms that go beyond that language without messing up the original (expressivity-restricted) ontology, and more. Further, because the annoying thing of merging two ontologies/modules can be that the merged ontology may be in a different language than the two original ones, which is very hard to predict, we have a cute proof-of-concept tool so that it assists with steps toward resolution of language feature conflicts by pinpointing profile violations.

 

Examples

The paper describes nine mechanisms with DOL and the mereotopological theories. Here I’ll start with a simple one: we have Minimal Topology (MT) partially represented in OWL 2 EL/QL in “theory8” where the connection relation (C) is just reflexive (among other axioms; see table in the paper for details). Now what if we add connection’s symmetry, which results in “theory4”? First, we do this by not harming theory8, in DOL syntax (see also the ESSLI’16 tutorial):

logic OWL2.QL
ontology theory4 =
theory8
then
ObjectProperty: C Characteristics: Symmetric %(t7)

What is the logic of theory4? Still in OWL, and if so, which species? The Owl classifier shows the result:

 

Another case is that OWL does not let one define an object property; at best, one can add domain and range axioms and the occasional ‘characteristic’ (like aforementioned symmetry), for allowing arbitrary full definitions pushes it out of the decidable fragment. One can add them, though, in a system that can handle first order logic, such as the Heterogeneous toolset (Hets); for instance, where in OWL one can add only “overlap” as a primitive relation (vocabulary element without definition), we can take such a theory and declare that definition:

logic CASL.FOL
ontology theory20 =
theory6_plus_antisym_and_WS
then %wdef
. forall x,y:Thing . O(x,y) <=> exists z:Thing (P(z,x) /\ P(z,y)) %(t21)
. forall x,y:Thing . EQ(x,y) <=> P(x,y) /\ P(y,x) %(t22)

As last example, let me illustrate the notion of the conflict resolution. Consider theory19—ground mereology, partially—that is within OWL 2 EL expressivity and theory18—also ground mereology, partially—that is within OWL 2 DL expressivity. So, they can’t be the same; the difference is that theory18 has parthood reflexive and transitive and proper parthood asymmetric and irreflexive, whereas theory19 has both parthood and proper parthood transitive. What happens if one aligns the ontologies that contain these theories, say, O1 (with theory18) and O2 (with theory19)? The Owl classifier provides easy pinpointing and tells you the profile: OWL 2 full (or: first order logic, or: beyond OWL 2 DL—top row) and why (bottom section):

Now, what can one do? The conflict resolution cannot be fully automated, because it depends on what the modeller wants or needs, but there’s enough data generated already and there are known trade-offs so that it is possible to describe the consequences:

  • Choose the O1 axioms (with irreflexivity and asymmetry on proper part of), which will make the ontology interoperable with other ontologies in OWL 2 DL, FOL or HOL.
  • Choose O2’s axioms (with transitivity on part of and proper part of), which will facilitate linking to ontologies in OWL 2 RL, 2 EL, 2 DL, FOL, and HOL.
  • Choose to keep both sets will result in an OWL 2 Full ontology that is undecidable, and it is then compatible only with FOL and HOL ontologies.

As serious final note: there’s still fun to be had on the logic side of things with countermodels and sub-networks and such, and with refining the conflict resolution to assist ontology engineers better. (or: TBC)

As less serious final note: the working title of early drafts of the paper was “DOLifying mereo(topo)logy”, but at some point we chickened out and let go of that frivolity.

 

References

[1] Keet, C.M., Kutz, O. Orchestrating a Network of Mereo(topo)logical Theories. Ninth International Conference on Knowledge Capture (K-CAP’17), Austin, Texas, USA, December 4-6, 2017. ACM Proceedings.

Our ESWC17 demos: TDDonto2 and an OWL verbaliser for isiZulu

Besides the full paper on heterogeneous alignments for 14th Extended Semantic Web Conference (ESWC’17) that will take place next week in Portoroz, Slovenia, we also managed to squeeze out two demo papers. You may already know of TDDonto2 with Kieren Davies and Agnieszka Lawrynowicz, which was discussed in an earlier post that has been updated with a tutorial video. It now has a demo paper as well [1], which describes the rationale and a few scenarios. The other demo, with Musa Xakaza and Langa Khumalo, is new-new, but the regular reader might have seen it coming: we finally managed to link the verbalisation patterns for certain Description Logic axiom types [2,3] to those in OWL ontologies. The tool takes as input an ontology in isiZulu and the verbalisation algorithms, and out come the isiZulu sentences, be this in plain text for further processing or in a GUI for inspection by a domain expert [4]. There is a basic demo-screencast to show it’s all working.

The overall architecture may be of interest, for it deviates from most OWL verbalisers. It is shown in the following figure:

For instance, we use the Python-based OWL API Owlready, rather than a Java-based app, for Python is rather popular in NLP and the verbalisation algorithms may be used elsewhere as well. We made more such decisions with the aim to make whatever we did as multi-purpose usable as possible, like the list of nouns with noun classes (surprisingly, and annoyingly, there is no such readily available list yet, though isizulu.net probably will have it somewhere but inaccessible), verb roots, and exceptions in pluralisation. (Problems for integrating the verbaliser with, say, Protégé will be interesting to discuss during the demo session!)

The text-based output doesn’t look as nice as the GUI interface, so I will show here only the GUI interface, which is adorned with some annotations to illustrate that those verbalisation algorithms in the background are far from trivial templates:

For instance, while in English the universal quantification is always ‘Each’ or ‘All’ regardless the named class quantified over, in isiZulu it depends on the noun class of the noun that is the name of the OWL class. For instance, in the figure above, izingwe ‘leopards’ is in noun class 10, so the ‘Each/All’ is Zonke, amavazi ‘vases’ is in noun class 6, so ‘Each/All’ then becomes Onke, and abantu ‘people’/’humans’ is in noun class 2, making Bonke. There are 17 noun classes. They also determine the subject concords (SC, alike conjugation) for the verbs, with zi- for noun class 10, ­a- for noun class 6, and ba- for noun class 2, to name a few. How this all works is described in [2,3]. We’ve implemented all those algorithms and integrated the pluraliser [5] in it to make it work. The source files are available to check and play with already, you can do so and ask us during the ESWC17 demo session, and/or also have a look at the related outputs of the NRF-funded project Grammar Engine for Nguni natural language interfaces (GeNi).

 

References

[1] Davies, K. Keet, C.M., Lawrynowicz, A. TDDonto2: A Test-Driven Development Plugin for arbitrary TBox and ABox axioms. Extended Semantic Web Conference (ESWC’17), Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (demo paper)

[2] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2017, 51:131-157.

[3] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. 9th International Natural Language Generation conference (INLG’16), 5-8 September, 2016, Edinburgh, UK. Association for Computational Linguistics, 174-183.

[4] Keet, C.M. Xakaza, M., Khumalo, L. Verbalising OWL ontologies in isiZulu with Python. 14th Extended Semantic Web Conference (ESWC’17). Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (demo paper)

[5] Byamugisha, J., Keet, C.M., Khumalo, L. Pluralising Nouns in isiZulu and Related Languages. 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing’16), Springer LNCS. April 3-9, 2016, Konya, Turkey.

Relations with roles / verbalising object properties in isiZulu

The narratives can be very different for the paper “A model for verbalising relations with roles in multiple languages” that was recently accepted paper at the 20th International Conference on Knowledge Engineering and Knowledge management (EKAW’16), for the paper makes a nice smoothie of the three ingredients of language, logic, and ontology. The natural language part zooms in on isiZulu as use case (possibly losing some ontologist or logician readers), then there are the logics about mapping the Description Logic DLR’s role components with OWL (lose possible interest of the natural language researchers), and a bit of philosophy (and lose most people…). It solves some thorny issues when trying to verbalise complicated verbs that we need for knowledge-to-text natural language generation in isiZulu and some other languages (e.g., German). And it solves the matching of logic-based representations popularised in mainly UML and ORM (that typically uses a logic in the DLR family of Description Logic languages) with the more commonly used OWL. The latter is even implemented as a Protégé plugin.

Let me start with some use-cases that cause problems that need to be solved. It is well-known that natural language renderings of ontologies facilitate communication with domain experts who are expected to model and validate the represented knowledge. This is doable for English, with ACE in the lead, but it isn’t for grammatically richer languages. There, there are complications, such as conjugation of verbs, an article that may be dependent on the preposition, or a preposition may modify the noun. For instance, works for, made by, located in, and is part of are quite common names for object properties in ontologies. They all do have a dependent preposition, however, there are different verb tenses, and the latter has a copulative and noun rather than just a verb. All that goes into the object properties name in an ‘English-based ontology’ and does not really have to be processed further in ontology verbalisation other than beautification. Not so in multiple other languages. For instance, the ‘in’ of located in ends up as affixes to the noun representing the object that the other object is located in. Like, imvilophu ‘envelope’ and emvilophini ‘in the envelope’ (locative underlined). Even something straightforward like a property eats can end up having to be conjugated differently depending on who’s eating: when a human eats, it is udla in isiZulu, but for, say, a dog, it is idla (modification underlined), which is driven by the system of noun classes, of which there are 17 in isiZulu. Many more examples illustrating different issues are described in the paper. To make a long story short, there are gradations in complicating effects, from no effect where a preposition can be squeezed in with the verb in naming an OP, to phonological conditioning, to modifying the article of the noun to modifying the noun. A ‘3rd pers. sg.’ may thus be context-dependent, and notions of prepositions may modify the verb or the noun or the article of the noun, or both. For a setting other than English ontologies (e.g., Greek, German, Lithuanian), a preposition may belong neither to the verb nor to the noun, but instead to the role that the object plays in the relation described by the verb in the sentence. For instance, one obtains yomuntu, rather than the basic noun umuntu, if it plays the role of the whole in a part-whole relation like in ‘heart is part of a human’ (inhliziyo iyingxenye yomuntu).

The question then becomes how to handle such a representation that also has to include roles? This is quite common in conceptual data modelling languages and in the DLR family of DL languages, which is known in ontology as positionalism [2]. Bumping up the role to an element in the representation language—thus, in addition to the relationship—enables one to attach information to it, like whether there is a (deep) preposition associated with it, the tense, or the case. Such role-based annotations can then be used to generate the right element, like einen Betrieb ‘some company’ to adjust the article for the case it goes with in German, or ya+umuntu=yomuntu ‘of a human’, modifying the noun in the object position in the sentence.

To get this working properly, with a solid theoretical foundation, we reused a part of the conceptual modelling languages’ metamodel [3] to create a language model for such annotations, in particular regarding the attributes of the classes in the metamodel. On its own, however, it is rather isolated and not immediately useful for ontologies that we set out to be in need of verbalising. To this end, it links to the ‘OWL way of representing relations’ (ontologically: the so-called standard view), and we separate out the logic-based representation from the readings that one can generate with the structured representation of the knowledge. All in all, the simplified high-level model looks like the picture below.

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

That much for the conceptual part; more details are described in the paper.

Just a fluffy colourful diagram isn’t enough for a solid implementation, however. To this end, we mapped one of the logics that adhere to positionalism to one of the standard view, being DLR [4] and OWL, respectively. It equally well could have been done for other pairs of languages (e.g., with Common Logic), but these two are more popular in terms of theory and tools.

Having the conceptual and logical foundations in place, we did implement it to see whether it actually can be done and to check whether the theory was sufficient. The Protégé plugin is called iMPALA—it could be an abbreviation for ‘Model for Positionalism And Language Annotation’—that both writes all the non-OWL annotations in a separate XML file and takes care of the renderings in Protégé. It works; yay. Specifically, it handles the interaction between the OWL file, the positionalist elements, and the annotations/attributes, plus the additional feature that one can add new linguistic annotation properties, so as to cater for extensibility. Here are a few screenshots:

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

The prey role in the axiom of the impala being eaten by the ibhubesi.

The prey role in the axiom of the impala being eaten by the ibhubesi.

 Annotations of the prey role itself, which is a role in the relationship ukudla.

Annotations of the prey role itself, which is a role in the relationship ukudla.

We did test it a bit, from just the regular feature testing to the African Wildlife ontology that was translated into isiZulu (spoken in South Africa) and a people and pets ontology in ciShona (spoken in Zimbabwe). These details are available in the online supplementary material.

The next step is to tie it all together, being the verbalisation patterns for isiZulu [5,6] and the OWL ontologies to generate full sentences, correctly. This is set to happen soon (provided all the protests don’t mess up the planning too much). If you want to know more details that are not, or not clearly, in the paper, then please have a look at the project page of A Grammar engine for Nguni natural language interfaces (GeNi), or come visit EKAW16 that will be held from 21-23 November in Bologna, Italy, where I will present the paper.

 

References

[1] Keet, C.M., Chirema, T. A model for verbalising relations with roles in multiple languages. 20th International Conference on Knowledge Engineering and Knowledge Management EKAW’16). Springer LNAI, 19-23 November 2016, Bologna, Italy. (in print)

[2] Leo, J. Modeling relations. Journal of Philosophical Logic, 2008, 37:353-385.

[3] Keet, C.M., Fillottrani, P.R. An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data & Knowledge Engineering, 2015, 98:30-53.

[4] Calvanese, D., De Giacomo, G. The Description Logics Handbook: Theory, Implementation and Applications, chap. Expressive description logics, pp. 178-218. Cambridge University Press (2003).

[5] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2016, in print.

[6] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. Proceedings of the 9th International Natural Language Generation conference 2016 (INLG’16), Edinburgh, Scotland, Sept 2016. ACL, 174-183.

Automatically finding the feasible object property

Late last month I wrote about the updated taxonomy of part-whole relations and claimed it wasn’t such a big deal during the modeling process to have that many relations to choose from. Here I’ll back up that claim. Primarily, it is thanks to the ‘Foundational Ontology and Reasoner enhanced axiomatiZAtion’ (FORZA) approach which includes the Guided ENtity reuse and class Expression geneRATOR (GENERATOR) method that was implemented in the OntoPartS-2 tool [1]. The general idea of the GENERATOR method is depicted in the figure below, which outlines two scenarios: one in which the experts perform the authoring of their domain ontology with the help of a foundational ontology, and the other one without a foundational ontology.

generator

I think the pictures are clearer than the following text, but some prefer text, so here goes the explanation attempt. Let’s start with scenario A on the left-hand side of the figure: a modeller has a domain ontology and a foundational ontology and she wants to relate class two domain classes (indicated with C and D) and thus needs to select some object property. The first step is, indeed, selecting C and D (e.g., Human and Heart in an anatomy ontology); this is step (1) in the Figure.

Then (step 2) there are those long red arrows, which indicate that somehow there has to be a way to deal with the alignment of Human and of Heart to the relevant categories in the foundational ontology. This ‘somehow’ can be either of the following three options: (i) the domain ontology was already aligned to the foundational ontology, so that step (2) is executed automatically in the background and the modeler need not to worry, (ii) she manually carries out the alignment (assuming she knows the foundational ontology well enough), or, more likely, (iii) she chooses to be guided by a decision diagram that is specific to the selected foundational ontology. In case of option (ii) or (iii), she can choose to save it permanently or just use it for the duration of the application of the method. Step (3) is an automated process that moves up in the taxonomy to find the possible object properties. Here is where an automated reasoner comes into the equation, which can step-wise retrieve the parent class, en passant relying on taxonomic classification that offers the most up-to-date class hierarchy (i.e., including implicit subsumptions) and therewith avoiding spurious candidates. From a modeller’s viewpoint, one thus only has to select which classes to relate, and, optionally, align the ontology, so that the software will do the rest, as each time it finds a domain and range axiom of a relationship in which the parents of C and D participate, it is marked as a candidate property to be used in the class expression. Finally, the candidate object properties are returned to the user (step 4).

While the figure shows only one foundational ontology, one equally well can use a separate relation ontology, like PW or PWMT, which is just an implementation variant of scenario A: the relation ontology is also traversed upwards and on each iteration, the base ontology class is matched against relational ontology to find relations where the (parent of the) class is defined in a domain and range axiom, also until the top is reached before returning candidate relations.

The second scenario with a domain ontology only is a simplified version of option A, where the alignment step is omitted. In Figure-B above, GENERATOR would return object properties W and R as options to choose from, which, when used, would not generate an inconsistency (in this part of the ontology, at least). Without this guidance, a modeler could, erroneously, select, say, object property S, which, if the branches are disjoint, would result in an inconsistency, and if not declared disjoint, move class C from the left-hand branch to the one in the middle, which may be an undesirable deduction.

For the Heart and Human example, these entities are, in DOLCE terminology, physical objects, so that it will return structural parthood or plain parthood, if the PW ontology is used as well. If, on the other hand, say, Vase and Clay would have been the classes selected from the domain ontology, then a constitution relation would be proposed (be this with DOLCE, PW, or, say, GFO), for Vase is a physical object and Clay an amount of matter. Or with Limpopo and South Africa, a tangential proper parthood would be proposed, because they are both geographic entities.

The approach without the reasoner and without the foundational ontology decision diagram was tested with users, and showed that such a tool (OntoPartS) made the ontology authoring more efficient and accurate [2], and that aligning to DOLCE was the main hurdle for not seeing even more impressive differences. This is addressed with OntoPartS-2, so it ought to work better. What still remains to be done, admittedly, is that larger usability study with the updated version OntoPartS-2. In the meantime: if you use it, please let us know your opinion.

 

References

[1] Keet, C.M., Khan, M.T., Ghidini, C. Ontology Authoring with FORZA. 22nd ACM International Conference on Information and Knowledge Management (CIKM’13). ACM proceedings, pp569-578. Oct. 27 – Nov. 1, 2013, San Francisco, USA.

[2] Keet, C.M., Fernandez-Reyes, F.C., Morales-Gonzalez, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

An exhaustive OWL species classifier

Students enrolled in my ontology engineering course have to do a “mini-project” on a particular topic, chosen from a list of topics, such as on ontology quality, verbalisations, or language features, and may be theoretical or software development-oriented. In terms of papers, the most impressive result was OntoPartS that resulted in an ESWC2012 paper with the two postgraduate students [1], but also quite some other useful results have come out of it over the past 7 years that I’m teaching it in one form or another. This year’s top project in terms of understanding the theory, creativity to do something with it that hasn’t been done before, and working software using Semantic Web technologies was the “OWL Classifier” by Aashiq Parker, Brian Mc George, and Muhummad Patel.

The OWL classifier classifies an OWL ontology in any of its ‘species’, which can be any of the 8 specified in the standard, i.e., the 3 OWL 1 ones and the 5 OWL 2 ones. It also gives information on the DL ‘alphabet soup’—which axioms use which language feature with which letter, and an explanation of the letters—and reports on which axioms are the ones that violate a particular species. An example is shown in the following screenshot, with an exercise ontology on phone points:

phonePoints

The students’ motivation to develop it was because they had to learn about DLs and the OWL species, but Protégé 4.x and 5.x don’t tell you the species and the interfaces have only a basic, generic, explanation for the DL expressivity. I concur. And is has gotten worse with Protégé 5.0: if an ontology is outside OWL 2 DL, it still says the ‘old’ DL expressivity plus an easy-to-overlook tiny red triangle in the top-right corner once the reasoner was invoked (using Hermit 1.3.8) or a cryptic “internal reasoner error” message (Pellet), whereas with Protégé 4.x you at least got a pop-up box complaining about the ‘non-simple role…’ issues. Compare that with the neat feedback like this:

t15and16

It is also very ‘sensitive’—more so than one would be with Protégé alone. Any remote ontology imports have to be available at the location specified with the IRI. Violations due to wrong datatype usage is a known issue with the OWL Reasoner Evaluation set of ontologies, and which we’ve bumped into with the TDD testing as well. The tool doesn’t accept the invalid ones (wrong datatypes—one can select any XML data type in Protégé, but the OWL standard doesn’t support them all). In addition, a language such as OWL 2 QL has further restrictions on types of datatypes. (It is also not trivial to figure out manually whether some ontology is suitable for OBDA or not.) So I tried one from the Ontop website’s examples, presumably in OWL 2 QL:

fishdelish

Strictly speaking, it isn’t in OWL 2 QL! The OWL 2 QL profile does have xsd:integer as datatype [2], not xsd:int, as, and I quote the standard, “the intersection of the value spaces of any set of these datatypes [including xsd:integer but not xsd:int, mk] is either empty or infinite, which is necessary to obtain the desired computational properties”. [UPDATE 24-6, thanks to Martin Rezk:] The main toolset for OWL 2 QL, Ontop, actually does support xsd:int and a few other datatypes beyond the standard (e.g.: also float and boolean). There is similar syntax fun to be had with the pizza ontology: the original one is indeed in OWL DL, but if you open the file in Protégé 5 and save it, it is not in OWL DL anymore but in OWL 2 DL, for the save operation snuck in an owl#NamedIndividual. Click on the thumbnails below to see the before-and-after in the OWL classifier. This is not an increase in expressiveness—both are in SHOIN—just syntax and tooling.

pizzaOldpizzaP5

 

 

 

 

 

The OWL Classifier can thus classify both OWL 1 and OWL 2 ontologies, which it does through a careful orchestration of two OWL APIs: v1.4.3 was the last one to support OWL 1 species checking, whereas for the OWL 2 ontologies, the latest version is used (v4.2.3). The jar file and the source code are freely available on github for anyone to use and to take further. Turning it into a Protégé plugin very likely will make at least next year’s ontology engineering students happy. Comments, questions, and suggestion are welcome!

 

References

[1] Keet, C.M., Fernandez-Reyes, F.C., Morales-Gonzalez, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

[2] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, Carsten Lutz, eds. OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 11 December 2012 (2nd ed.).

The TDDonto tool to try out TDD for ontology authoring

Last month I wrote about Test-Driven Development for ontologies, which is described in more detail in the ESWC’16 paper I co-authored with Agnieszka Lawrynowicz [1]. That paper does not describe much about the actual tool implementing the tests, TDDonto, although we have it and used it for the performance evaluation. Some more detail on its design and more experimental results are described in the paper “The TDDonto Tool for Test-Driven Development of DL Knowledge Bases” [2] that has just been published in the proceedings of the 29th International Workshop on Description Logics, which will take place next weekend in Cape Town (22-25 April 2016).

What we couldn’t include there in [2] is multiple screenshots to show how it works, but a blog is a fine medium for that, so I’ll illustrate the tool with some examples in the remainder of the post. It’s an alpha version that works. No usability and HCI evaluations have been done, but at least it’s a Protégé plugin rather than command line :).

First, you need to download the plugin from Agnieszka’s ARISTOTELES project page and place the jar file in the plugins folder of Protégé 5.0. You can then go to the Protégé menu bar, select Windows – Views – Evaluation views – TDDOnto, and place it somewhere on the screen and start using it. For the examples here, I used the African Wildlife Ontology tutorial ontology (AWO v1) from my ontology engineering course.

Make sure to have selected an automated reasoner, and classify your ontology. Now, type a new test in the “New test” field at the top, e.g. carnivore DisjointWith: herbivore, click “Add test”, select the checkbox of the test to execute, and click the “Execute test”: the status will be returned, as shown in the screenshot below. In this case, the “OK” says that the disjointness is already asserted or entailed in the ontology.

cdisjh

Now let’s do a TDD test that is going to fail (you won’t know upfront, of course); e.g., testing whether impalas are herbivores:

impalaFail

The TDD test failed because the subsumption is neither asserted nor entailed in the ontology. One can then click “add to ontology”, which updates the ontology:

impalaAdd

Note that the reasoner has to be run again after a change in the ontology.

Lets do two more: testing whether lion is a carnivore and that flower is a plan part. The output of the tests is as follows:

lionflower

It returns “OK” for the lion, because it is entailed in the ontology: a carnivore is an entity that eats only animals or parts thereof, and lions eat only herbivore and eats some impala (which are animals). The other one, Flower SubClassOf: PlantParts fails as “undefined”, because Flower is not in the ontology.

Ontologies do not have only subsumption and disjointness axioms, so let’s assume that impalas eat leaves and we want check whether that is in the ontology, as well as whether lions eat animals:

lionImpalaEats

The former failed because there are no properties for the impala in the AWO v1, the latter passed, because a lion eats impala, and impala is an animal. Or: the TDDOnto tool indeed behaves as expected.

Currently, only a subset of all the specified tests have been implemented, due to some limitations of existing tools, but we’re working on implementing those as well.

If you have any feedback on TDDOnto, please don’t hesitate to tell us. I hope to be seeing you later in the week at DL’16, where I’ll be presenting the paper on Sunday afternoon (24th) and I also can give a live demo any time during the workshop (or afterwards, if you stay for KR’16).

 

References

[1] Keet, C.M., Lawrynowicz, A. Test-Driven Development of Ontologies. 13th Extended Semantic Web Conference (ESWC’16). Springer LNCS. 29 May – 2 June, 2016, Crete, Greece. (in print)

[2] Lawrynowicz, A., Keet, C.M. The TDDonto Tool for Test-Driven Development of DL Knowledge bases. 29th International Workshop on Description Logics (DL’16). April 22-25, Cape Town, South Africa. CEUR WS vol. 1577.