ICTs for South Africa’s indigenous languages should be a national imperative, too

South Africa has 11 official languages with English as the language of business, as decided during the post-Apartheid negotiations. In practice, that decision has resulted in the other 10 being sidelined, which holds even more so for the nine indigenous languages, as they were already underresourced. This trend runs counter to the citizens’ constitutional rights and the state’s obligations, as she “must take practical and positive measures to elevate the status and advance the use of these languages” (Section 6 (2)). But the obligations go beyond just language promotion. Take, e.g., the right to have access to the public health system: one study showed that only 6% of patient-doctor consultations was held in the patient’s home language[1], with the other 94% essentially not receiving the quality care they deserve due to language barriers[2].

Learning 3-4 languages up to practical multilingualism is obviously a step toward achieving effective communication, which therewith reduces divisions in society, which in turn fosters cohesion-building and inclusion, and may contribute to achieve redress of the injustices of the past. This route does tick multiple boxes of the aims presented in the National Development Plan 2030. How to achieve all that is another matter. Moreover, just learning a language is not enough if there’s no infrastructure to support it. For instance, what’s the point of searching the Web in, say, isiXhosa when there are only a few online documents in isiXhosa and the search engine algorithms can’t process the words properly anyway, hence, not returning the results you’re looking for? Where are the spellcheckers to assist writing emails, school essays, or news articles? Can’t the language barrier in healthcare be bridged by on-the-fly machine translation for any pair of languages, rather than using the Mobile Translate MD system that is based on canned text (i.e., a small set of manually translated sentences)?

 

Rule-based approaches to develop tools

Research is being carried out to devise Human Language Technologies (HLTs) to answer such questions and contribute to realizing those aspects of the NDP. This is not simply a case of copying-and-pasting tools for the more widely-spoken languages. For instance, even just automatically generating the plural noun in isiZulu from a noun in the singular required a new approach that combined syntax (how it is written) with semantics (the meaning) through inclusion of the noun class system in the algorithms[3] [summary]. In contrast, for English, just syntax-based rules can do the job[4] (more precisely: regular expressions in a Perl script). Rule-based approaches are also preferred for morphological analysers for the regional languages[5], which split each word into its constituent parts, and for natural language generation (NLG). An NLG system generates natural language text from structured data, information, or knowledge, such as data in spreadsheets. A simple way of realizing that is to use templates where the software slots in the values given by the data. This is not possible for isiZulu, because the sentence constituents are context-dependent, of which the idea is illustrated in Figure 1[6].

Figure 1. Illustration of a template for the ‘all-some’ axiom type of a logical theory (structured knowledge) and some values that are slotted in, such as Professors, resp. oSolwazi, and eat, resp. adla and zidla; ‘nc’ denotes the noun class of the noun, which governs agreement across related words in a sentence. The four sample sentences in English and isiZulu represent the same information.

Therefore, a grammar engine is needed to generate even the most basic sentences correctly. The core aspects of the workflow in the grammar engine [summary] are presented schematically in Figure 2[7], which is being extended with more precise details of the verbs as a context-free grammar [summary][8]. Such NLG could contribute to, e.g., automatically generating patient discharge notes in one’s own language, text-based weather forecasts, or online language learning exercises.

Figure 2. The isiZulu grammar engine for knowledge-to-text consists conceptually of three components: the verbalisation patterns with their algorithms to generate natural language for a selection of axiom types, a way of representing the knowledge in a structured manner, and the linking of the two to realize the generation of the sentences on-the-fly. It has been implemented in Python and Owlready.

 

Data-driven approaches that use lots of text

The rules-based approach is known to be resource-intensive. Therefore, and in combination with the recent Big Data hype, data-driven approaches with lost of text are on the rise: it offers the hope to achieve more with less effort, not even having to learn the language, and easier bootstrapping of tools for related languages. This can work, provided one has a lot of good quality text (a corpus). Corpora are being developed, such as the isiZulu National Corpus[9], and the recently established South African Centre for Digital Language Resources (SADiLaR) aims to pool the resources. We investigated the effects of a corpus on the quality of an isiZulu spellchecker [summary], which showed that learning the statistics-driven language model on old texts like the bible does not transfer well to modern-day texts such as news items, nor vice versa[10]. The spellchecker has about 90% accuracy in single-word error detection and it seems to contribute to the intellectualisation[11] of isiZulu [summary][12]. Its algorithms use trigrams and probabilities of their occurrence in the corpus to compute the probability that a word is spelled correctly, illustrated in Figure 3, rather than a dictionary-based approach that is impractical for agglutinating languages. The algorithms were reused for isiXhosa simply by feeding it a small isiXhosa corpus: it achieved about 80% accuracy already even without optimisations.

Figure 3. Illustration of the underlying approach of the isiZulu spellchecker

Data-driven approaches are also pursued in information retrieval to, e.g., develop search engines for isiZulu and isiXhosa[13]. Algorithms for data-driven machine translation (MT), on the other hand, can easily be misled by out-of-domain training data of parallel sentences in both languages from which it has to learn the patterns, such as such as concordial agreement like izi- zi- (see Figure 1). In one of our experiments where the MT system learned from software localization texts, an isiXhosa sentence in the context of health care, Le nto ayiqhelekanga kodwa ngokwenene iyenzeka ‘This is not very common, but certainly happens.’ came out as ‘The file is not valid but cannot be deleted.’, which is just wrong. We are currently creating a domain-specific parallel corpus to improve the MT quality that, it is hoped, will eventually replace the afore-mentioned Mobile Translate MD system. It remains to be seen whether such a data-driven MT or an NLG approach, or a combination thereof, may eventually further alleviate the language barriers in healthcare.

 

Because of the ubiquity of ICTs in all of society in South Africa, HLTs for the indigenous languages have become a necessity, be it for human-human or human-computer interaction. Profit-driven multinationals such as Google, Facebook, and Microsoft put resources into development of HLTs for African languages already. Languages, and the identities and cultures intertwined with them, are a national resource, however; hence, suggesting the need for more research and the creation of a substantial public good of a wide range of HLTs to assist people in the use of their language in the digital age and to contribute to effective communication in society.

[1] Levin, M.E. Language as a barrier to care for Xhosa-speaking patients at a South African paediatric teaching hospital. S Afr Med J. 2006 Oct; 96 (10): 1076-9.

[2] Hussey, N. The Language Barrier: The overlooked challenge to equitable health care. SAHR, 2012/13, 189-195.

[3] Byamugisha, J., Keet, C.M., Khumalo, L. Pluralising Nouns in isiZulu and Related Languages. 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing’16). A. Gelbukh (Ed.). Springer LNCS vol 9623, pp. April 3-9, 2016, Konya, Turkey.

[4] Conway, D.M.: An algorithmic approach to English pluralization. In: Salzenberg, C. (ed.) Proceedings of the Second Annual Perl Conference. O’Reilly (1998), San Jose, USA, 17-20 August, 1998

[5] Pretorius, L. & Bosch, S.E. Enabling computer interaction in the indigenous languages of South Africa: The central role of computational morphology. ACM Interactions, 56 (March + April 2003).

[6] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2017, 51(1): 131-157.

[7] Keet, C.M. Xakaza, M., Khumalo, L. Verbalising OWL ontologies in isiZulu with Python. The Semantic Web: ESWC 2017 Satellite Events, Blomqvist, E et al. (eds.). Springer LNCS vol 10577, 59-64.

[8] Keet, C.M., Khumalo, L. Grammar rules for the isiZulu complex verb. Southern African Linguistics and Applied Language Studies, 2017, 35(2): 183-200.

[9] L. Khumalo. Advances in Developing corpora in African languages. Kuwala, 2015, 1(2): 21-30.

[10] Ndaba, B., Suleman, H., Keet, C.M., Khumalo, L. The effects of a corpus on isiZulu spellcheckers based on N-grams. In IST-Africa.2016. (May 11-13, 2016). IIMC, Durban, South Africa, 2016, 1-10.

[11] Finlayson, R, Madiba, M. The intellectualization of the indigenous languages of South Africa: Challenges and prospects. Current Issues in Language Planning, 2002, 3(1): 40-61.

[12] Keet, C.M., Khumalo, L. Evaluation of the effects of a spellchecker on the intellectualization of isiZulu. Alternation, 2017, 24(2): 75-97.

[13] Malumba, N., Moukangwe, K., Suleman, H. AfriWeb: A Web Search Engine for a Marginalized Language. Proceedings of 2015 Asian Digital Library Conference, Seoul, South Korea, 9-12 December 2015.

Advertisements

Updated isiZulu spellchecker and new isiXhosa spellchecker

Noting that February is the month of language activism in South Africa and that 21 February is the International Mother Language Day (a United Nations event since 2000), let me add my proverbial two cents to that. Since the launch of the isiZulu spellchecker in November 2016, research and development has progressed quite a bit, so that we have released a new ‘version 2’ of the spellchecker. For those not in-the-know: isiZulu and isiXhosa are both among the 11 official languages of South Africa, with isiZulu the largest language in the country by first language speakers and isiXhosa is slated to make an international breakthrough, as it’s used in the Black Panther movie that was released this weekend. Anyhow, the main novelties of the updated spellchecker are:

  • first error correction algorithms for isiZulu;
  • improved error detection with a few basic rules, also for isiZulu;
  • new isiXhosa error detection and correction;

The source code is open source, and, due to various tool limitations beyond our control, it’s still a standalone jar file (zipped for download). Here’s a screenshot of the tool, where it checks a piece of text from a novel in isiZulu, illustrating that *khupels has a substitution error (khupela was the intended word):

Single word error *khupels that has a substitution error s for a in the intended word (khupela)

The error corrector can propose possible corrections for single-word errors that are either transpositions, substitutions, insertions, or deletions. So, for instance, *eybo, *yrbo, *yeebo, and *ybo, respectively, cf. the correctly spelled yebo ‘yes’. It doesn’t perform equally well on each type of typo yet, with the best results obtained for transpositions. As with the error detector, it relies on a data-driven approach, with, for error correction, a lot more statistics-based algorithms cf. the error detection-only algorithms. They are described in detail in Frida Mjaria’s 2017 CS honours project. Suggestion accuracy (i.e., that it at least can suggest something) is 95% and suggestion relevance (that it contains the intended word) made it to 61%, mainly due to weak results of corrections for insertion errors (they mess too much with the trigrams).

The error detection accuracy has been improved mainly through better handling of punctuation, thanks to Norman Pilusa’s programming efforts. This was done through a series of rules on top of the data-driven approach, for it is too hard to learn those from a large corpus. For instance, semi-colons, end-of-sentence periods, and numbers (written in isiZulu like, e.g., ngu-42 rather than just 42) are now mostly ignored rather than the words adjacent to it being detected as probably misspelt. It works better than spellchecker.net’s version, which is the only other available isiZulu spellchecker: on a random selection of actual pieces of text, our tool obtained 91.71% lexical recall for error detection, whereas the spellchecker.net’s version got to 82.66% on the same text. Put differently: spellchecker.net flagged about twice as many words as incorrect as ours did (so there wasn’t much point in comparing error corrections).

Finally, because all the algorithms are essentially language-independent (ok, there’s an underlying assumption of using them for highly agglutinative languages), we fed the algorithms a large isiXhosa corpus that is being developed as part of another project, and incorporated that into the spellchecker. There’s room for some fine-tuning especially for the corrector, but at least now there is one, thanks to Norman Pilusa’s software development contributions. That we thought we could get away with this approach is thanks to Nthabiseng Mashiane’s 2017 CS honours project, which showed that the results would be fairly good (>80% error detection) with more data. We also tried a rules-based approach for isiXhosa. It obtained better accuracies than the statistical language model of Nthabiseng, but only for those parts of speech covered by the rules, which is a subset of all types of words. If you’re interested in those rules, please check out Siseko Neti’s 2017 CS Honours project. To the best of my knowledge, it’s the first time those rules have been formally represented in a computer-usable format and they may be useful for other endeavours, such as morphological analysers.

A section of the isiXhosa Wikipedia entry about the UN (*ukuez should be ukuze, which is among the proposed words).

Further improvements are possible, which are being scoped for a v3 some time later. For instance, for the linguists and language scholars: what are the most common typos? What are the most commonly used words? If we had known that, it would have been an easy way to boost the performance. Can we find optimisations to substitutions, insertions, and deletions similar to the one for transpositions? Should some syntax rules be added for further optimisation? These are some of the outstanding questions. If you’re interested in that or related questions, or you would like to use the algorithms in your tool, please contact me.

Orchestrating 28 logical theories of mereo(topo)logy

Parts and wholes, again. This time it’s about the logic-aspects of theories of parthood (cf. aligning different hierarchies of (part-whole) relations and make them compatible with foundational ontologies). I intended to write this post before the Ninth Conference on Knowledge Capture (K-CAP 2017), where the paper describing the new material would be presented by my co-author, Oliver Kutz. Now, afterwards, I can add that “Orchestrating a Network of Mereo(topo) logical Theories” [1] even won the Best Paper Award. The novelties, in broad strokes, are that we figured out and structured some hitherto messy and confusing state of affairs, showed that one can do more than generally assumed especially with a new logics orchestration framework, and we proposed first steps toward conflict resolution to sort out expressivity and logic limitations trade-offs. Constructing a tweet-size “tl;dr” version of the contents is not easy, and as I have as much space here on my blog as I like, it ended up to be three paragraphs here: scene-setting, solution, and a few examples to illustrate some of it.

 

Problems

As ontologists know, parthood is used widely in ontologies across most subject domains, such as biomedicine, geographic information systems, architecture, and so on. Ontology (the philosophers) offer a parthood relation that has a bunch of computationally unpleasant properties that are structured in a plethora of mereologicial and meretopological theories such that it has become hard to see the forest for the trees. This is then complicated in practice because there are multiple logics of varying expressivity (support more or less language features), with the result that only certain fragments of the mereo(topo)logical theories can be represented. However, it’s mostly not clear what can be used when, during the ontology authoring stage one may want to have all those features so as to check correctness, and it’s not easy to predict what will happen when one aligns ontologies with different fragments of mereo(topo)logy.

 

Solution

We solved these problems by specifying a structured network of theories formulated in multiple logics that are glued together by the various linking constructs of the Distributed Ontology, Model, and Specification Language (DOL). The ‘structured network of theories’-part concerns all the maximal expressible fragments of the KGEMT mereotopological theory and five of its most well-recognised sub-theories (like GEM and MT) in the seven Description Logics-based OWL species, first-order logic, and higher order logic. The ‘glued together’-part refers to relating the resultant 28 theories within DOL (in Ontohub), which is a non-trivial (understatement, unfortunately) metalanguage that has the constructors for the glue, such as enabling one to declare to merge two theories/modules represented in different logics, extending a theory (ontology) with axioms that go beyond that language without messing up the original (expressivity-restricted) ontology, and more. Further, because the annoying thing of merging two ontologies/modules can be that the merged ontology may be in a different language than the two original ones, which is very hard to predict, we have a cute proof-of-concept tool so that it assists with steps toward resolution of language feature conflicts by pinpointing profile violations.

 

Examples

The paper describes nine mechanisms with DOL and the mereotopological theories. Here I’ll start with a simple one: we have Minimal Topology (MT) partially represented in OWL 2 EL/QL in “theory8” where the connection relation (C) is just reflexive (among other axioms; see table in the paper for details). Now what if we add connection’s symmetry, which results in “theory4”? First, we do this by not harming theory8, in DOL syntax (see also the ESSLI’16 tutorial):

logic OWL2.QL
ontology theory4 =
theory8
then
ObjectProperty: C Characteristics: Symmetric %(t7)

What is the logic of theory4? Still in OWL, and if so, which species? The Owl classifier shows the result:

 

Another case is that OWL does not let one define an object property; at best, one can add domain and range axioms and the occasional ‘characteristic’ (like aforementioned symmetry), for allowing arbitrary full definitions pushes it out of the decidable fragment. One can add them, though, in a system that can handle first order logic, such as the Heterogeneous toolset (Hets); for instance, where in OWL one can add only “overlap” as a primitive relation (vocabulary element without definition), we can take such a theory and declare that definition:

logic CASL.FOL
ontology theory20 =
theory6_plus_antisym_and_WS
then %wdef
. forall x,y:Thing . O(x,y) <=> exists z:Thing (P(z,x) /\ P(z,y)) %(t21)
. forall x,y:Thing . EQ(x,y) <=> P(x,y) /\ P(y,x) %(t22)

As last example, let me illustrate the notion of the conflict resolution. Consider theory19—ground mereology, partially—that is within OWL 2 EL expressivity and theory18—also ground mereology, partially—that is within OWL 2 DL expressivity. So, they can’t be the same; the difference is that theory18 has parthood reflexive and transitive and proper parthood asymmetric and irreflexive, whereas theory19 has both parthood and proper parthood transitive. What happens if one aligns the ontologies that contain these theories, say, O1 (with theory18) and O2 (with theory19)? The Owl classifier provides easy pinpointing and tells you the profile: OWL 2 full (or: first order logic, or: beyond OWL 2 DL—top row) and why (bottom section):

Now, what can one do? The conflict resolution cannot be fully automated, because it depends on what the modeller wants or needs, but there’s enough data generated already and there are known trade-offs so that it is possible to describe the consequences:

  • Choose the O1 axioms (with irreflexivity and asymmetry on proper part of), which will make the ontology interoperable with other ontologies in OWL 2 DL, FOL or HOL.
  • Choose O2’s axioms (with transitivity on part of and proper part of), which will facilitate linking to ontologies in OWL 2 RL, 2 EL, 2 DL, FOL, and HOL.
  • Choose to keep both sets will result in an OWL 2 Full ontology that is undecidable, and it is then compatible only with FOL and HOL ontologies.

As serious final note: there’s still fun to be had on the logic side of things with countermodels and sub-networks and such, and with refining the conflict resolution to assist ontology engineers better. (or: TBC)

As less serious final note: the working title of early drafts of the paper was “DOLifying mereo(topo)logy”, but at some point we chickened out and let go of that frivolity.

 

References

[1] Keet, C.M., Kutz, O. Orchestrating a Network of Mereo(topo)logical Theories. Ninth International Conference on Knowledge Capture (K-CAP’17), Austin, Texas, USA, December 4-6, 2017. ACM Proceedings.

Figuring out the verbalisation of temporal constraints in ontologies and conceptual models

Temporal conceptual models, ontologies, and their logics are nothing new, but that sort of information and knowledge representation still doesn’t gain a lot of traction (cf. say, formal methods for verification). This is in no small part because modelling temporal information is not easy. Several conceptual modelling languages do have various temporal extensions, but most modellers don’t even use all of the default language features yet [1]. How could one at least reduce the barrier to adoption of temporal logics and modelling languages? The two principle approaches are visualisation with a diagrammatic language and rendering it in a (pseudo-)natural language. One of my postgraduate students looked at the former, trying to figure out what would be the best icons and such, which showed there was still a steep learning curve [2]. Before examining whether that could be optimised, I wondered whether the natural language option might be promising. The problem was, that no-one had yet tried to determine what the natural language counterpart of the temporal constraints were supposed to be, let alone whether they be ‘adequate’ or the ‘best’ way of rendering the temporal constraints in tolerable natural language sentences. I wanted to know that badly enough that I tried to find out.

Given that using templates is a tried-and-tested relatively successful approach for atemporal conceptual models and ontologies (e.g., for ORM, the ACE system), it makes sense to do something similar, but then for some temporal extension. As temporal conceptual modelling language I used one that has a Description Logics foundation (DLRUS [3,4]) for that easily links to ontologies as well, added a few known temporal constraints (like for relationships/DL roles, mandatory) and removing others (some didn’t seem all that interesting), which resulted in 34 constraints, still. For each one, I tried to devise more and less reasonable templates, resulting in 101 templates overall. Those templates were evaluated on semantics and preference by three temporal logic experts and five ‘mixed experts’ (experts in natural language generation, logic, or modelling). This resulted in a final set of preferred templates to verbalise the temporal constraints. The remainder of this post first describes a bit about the templates and then the results of which I think they are most interesting.

Templates

The basic idea of a template—in the context of the verbalisation of conceptual models and ontologies—is to have some natural language for the constraint where then the vocabulary gets slotted in at runtime. Take, for instance, simple named class subsumption in an ontology, C \sqsubseteq D, for which one could define a template “Each [C] is a(n) [D]”, so that with some axiom Manager \sqsubseteq Employee, it would generate the sentence “Each Manager is an Employee”. One also could have devised the template “All [C] are [D]” and then it would have generated “All Managers are Employees”. The choice between the two templates in this case is just taste, for in both cases, the semantics is the same. More complex axioms are not always that straightforward. For instance, for the axiom type C \sqsubseteq \exists R.D, would “Each [C] [R] some [D]” be good enough, or would perhaps “Each [C] must [R] at least one [D]” be better? E.g., “Each Professor teaches some Course” vs “Each Professor must teach at least one Course”.

The same can be done for the temporal constraints. To get there, I did a bit of a linguistic detour that informed the template design (described in the paper [5]). Let us take as first example for templates temporal class that has a semantics of o \in C^{\mathcal{I}(t)} \rightarrow \exists t' \neq t. o \notin C^{\mathcal{I}(t')}; for instance, UndergraduateStudent (assuming they graduate and end up as alumni or as drop outs, and weren’t undergrads from birth):

  1. If an object is an instance of entity type [C], then there is some time where it is not a(n) [C].
  2. [C] is an entity type whose objects are, for some time in their existence, not instances of [C].
  3. [C] is an entity type of which each object is not a(n) [C] for some time during its existence.
  4. All instances of entity type [C] are not a(n) [C] for some time.
  5. Each [C] is not a(n) [C] for some time.
  6. Each [C] is for some time not a(n) [C].

Which one(s) do you think captures the semantics, and which one(s) do you prefer?

A more elaborate constraint for relationships is ‘dynamic extension for relationships, past, mandatory], which is formalised as \langle o , o' \rangle \in \mbox{{\sc RDexM}-}_{R_1,R_2}^{\mathcal{I}(t)} \rightarrow (\langle o , o' \rangle \in{\tt R_1}^{\mathcal{I}(t)} \rightarrow \exists t'<t. \langle o , o' \rangle \in \mbox{{\sc RDex}}_{R_1,R_2}^{\mathcal{I}(t')} where \langle o , o' \rangle \in \mbox{{\sc RDex}}_{R_1,R_2}^{\mathcal{I}(t)} \rightarrow ( \langle o , o' \rangle \in{\tt R_1}^{\mathcal{I}(t)} \rightarrow    \exists t'>t. \langle o , o' \rangle \in {\tt R_2}^{\mathcal{I}(t')}).; e.g., every passenger who boards a flight must have checked in for that flight. Two options could be:

  1. Each ..C_1.. ..R_1.. ..C_2.. was preceded by ..C_1.. ..R_2.. ..C_2.. some time earlier.
  2. Each ..C_1.. ..R_1.. ..C_2.. must be preceded by ..C_1.. ..R_2.. ..C_2.. .

I’m not saying they are all correct; they were some of the options given, which the participants could choose from and comment on. The full list of constraints and template options are available in the supplementary material, which also contains a file where you can fill in your own answers, see what the (anonymised) participants said, and it has the final list of ‘best’ constraints.

Results

The main aggregate quantitative results are shown in the following table.

Many observations can be made from the data (see the paper for details). Some of the salient aspects are that there was low inter-annotator agreement among the experts, despite that they know each other (temporal logics is a small community) and that the ‘mixed group’ deemed many sentences correct that the experts deemed wrong in the sense of not properly capturing the semantics of the constraint. Put differently, it looks like the mixed experts, as a group, did not fully grasp some subtle distinction in the temporal constraints.

With respect to the templates, the preferred ones don’t follow the structure of the logic, but are, in a way, a separate rendering, or: there’s no neat 1:1 mapping between axiom type and template structure. That said, that doesn’t mean that they always chose the shortest template: the experts definitely did not, while the mixed experts leaned a bit toward preferring templates with fewer words even though they were surely not always the semantically correct option.

It may not look good that the experts preferred different templates, but in a follow-up interview with one of the experts, the expert noted that it was not really a problem “for there is the logic that does have the precise meaning anyway” and thus “resolves any confusion that may arise from using slightly different terminology”. The temporal logic expert does have a point from the expert’s view, fair enough, but that pretty much defeats my aim with the experiment. Asking more non-experts may not be a good strategy either, for they are, on average, too lenient.

So, for now, we do have a set of, relatively, ‘best’ templates to verbalise temporal constraints in temporal conceptual models and ontologies. The next step is to compare that with the diagrammatic representation. This we did [6], and I’ll describe those results informally in a next post.

I’ll present more details at the upcoming CREOL: Contextual Representation of Events and Objects in Language Workshop that is part of the Joint Ontology Workshops 2017, which will be held next week (21-23 September) in Bolzano, Italy. As the KRDB group at FUB in Bolzano has a few temporal logic experts, I’m looking forward to the discussions! Also, I’d be happy if you would be willing to fill in the spreadsheet with your preferences (before looking at the answers given by the participants!), and send them to me.

 

References

[1] Keet, C.M., Fillottrani, P.R. An analysis and characterisation of publicly available conceptual models. 34th International Conference on Conceptual Modeling (ER’15). Johannesson, P., Lee, M.L. Liddle, S.W., Opdahl, A.L., Pastor López, O. (Eds.). Springer LNCS vol 9381, 585-593. 19-22 Oct, Stockholm, Sweden.

[2] T. Shunmugam. Adoption of a visual model for temporal database representation. M. IT thesis, Department of Computer Science, University of Cape Town, South Africa, 2016.

[3] A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal description logic for reasoning about conceptual schemas and queries. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Proceedings of the 8th Joint European Conference on Logics in Artificial Intelligence (JELIA-02), volume 2424 of LNAI, pages 98-110. Springer Verlag, 2002.

[4] A. Artale, C. Parent, and S. Spaccapietra. Evolving objects in temporal information systems. Annals of Mathematics and Artificial Intelligence, 50(1-2):5-38, 2007.

[5] Keet, C.M. Natural language template selection for temporal constraints. CREOL: Contextual Representation of Events and Objects in Language, Joint Ontology Workshops 2017, 21-23 September 2017, Bolzano, Italy. CEUR-WS Vol. (in print).

[6] Keet, C.M., Berman, S. Determining the preferred representation of temporal constraints in conceptual models. 36th International Conference on Conceptual Modeling (ER’17). Springer LNCS. 6-9 Nov 2017, Valencia, Spain. (in print)

Our ESWC17 demos: TDDonto2 and an OWL verbaliser for isiZulu

Besides the full paper on heterogeneous alignments for 14th Extended Semantic Web Conference (ESWC’17) that will take place next week in Portoroz, Slovenia, we also managed to squeeze out two demo papers. You may already know of TDDonto2 with Kieren Davies and Agnieszka Lawrynowicz, which was discussed in an earlier post that has been updated with a tutorial video. It now has a demo paper as well [1], which describes the rationale and a few scenarios. The other demo, with Musa Xakaza and Langa Khumalo, is new-new, but the regular reader might have seen it coming: we finally managed to link the verbalisation patterns for certain Description Logic axiom types [2,3] to those in OWL ontologies. The tool takes as input an ontology in isiZulu and the verbalisation algorithms, and out come the isiZulu sentences, be this in plain text for further processing or in a GUI for inspection by a domain expert [4]. There is a basic demo-screencast to show it’s all working.

The overall architecture may be of interest, for it deviates from most OWL verbalisers. It is shown in the following figure:

For instance, we use the Python-based OWL API Owlready, rather than a Java-based app, for Python is rather popular in NLP and the verbalisation algorithms may be used elsewhere as well. We made more such decisions with the aim to make whatever we did as multi-purpose usable as possible, like the list of nouns with noun classes (surprisingly, and annoyingly, there is no such readily available list yet, though isizulu.net probably will have it somewhere but inaccessible), verb roots, and exceptions in pluralisation. (Problems for integrating the verbaliser with, say, Protégé will be interesting to discuss during the demo session!)

The text-based output doesn’t look as nice as the GUI interface, so I will show here only the GUI interface, which is adorned with some annotations to illustrate that those verbalisation algorithms in the background are far from trivial templates:

For instance, while in English the universal quantification is always ‘Each’ or ‘All’ regardless the named class quantified over, in isiZulu it depends on the noun class of the noun that is the name of the OWL class. For instance, in the figure above, izingwe ‘leopards’ is in noun class 10, so the ‘Each/All’ is Zonke, amavazi ‘vases’ is in noun class 6, so ‘Each/All’ then becomes Onke, and abantu ‘people’/’humans’ is in noun class 2, making Bonke. There are 17 noun classes. They also determine the subject concords (SC, alike conjugation) for the verbs, with zi- for noun class 10, ­a- for noun class 6, and ba- for noun class 2, to name a few. How this all works is described in [2,3]. We’ve implemented all those algorithms and integrated the pluraliser [5] in it to make it work. The source files are available to check and play with already, you can do so and ask us during the ESWC17 demo session, and/or also have a look at the related outputs of the NRF-funded project Grammar Engine for Nguni natural language interfaces (GeNi).

 

References

[1] Davies, K. Keet, C.M., Lawrynowicz, A. TDDonto2: A Test-Driven Development Plugin for arbitrary TBox and ABox axioms. Extended Semantic Web Conference (ESWC’17), Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (demo paper)

[2] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2017, 51:131-157.

[3] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. 9th International Natural Language Generation conference (INLG’16), 5-8 September, 2016, Edinburgh, UK. Association for Computational Linguistics, 174-183.

[4] Keet, C.M. Xakaza, M., Khumalo, L. Verbalising OWL ontologies in isiZulu with Python. 14th Extended Semantic Web Conference (ESWC’17). Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (demo paper)

[5] Byamugisha, J., Keet, C.M., Khumalo, L. Pluralising Nouns in isiZulu and Related Languages. 17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing’16), Springer LNCS. April 3-9, 2016, Konya, Turkey.

On heterogeneous mappings between ontologies

Representing information and knowledge often can be done in different ways even when the same representation language is used. In some cases, one way of representing it is always better than another—or: the other option is sub-optimal or plain wrong—but in other cases the distinction is not all that clear-cut. For instance, whether to represent ‘Employee’ as a subclass of ‘Person’ or that it inheres in ‘Person’. Now, if two ontologies (or conceptual models) represent it differently but they have to be aligned, then how to find such different modelling patterns and how to align them? And, taking a step back: which alternate modelling patterns are there, and why those? We sought to answer these questions, whose outcome will be presented (and appear in the proceedings of [1]) the 14th Extended Semantic Web Conference (ESWC’17) that will take place later this month in Portoroz, Slovenia.

Setting aside the formal stuff in this blog post, let’s first have a look at some of those different modelling patterns. At it’s core, there are 1) modelling practices in ontologies vs conceptual models and 2) foundational [or: top-level, or upper] ontology guidance vs being ‘compacter’ in representing the knowledge. The generalisations of the following handwaivy examples are described in more detail in the paper, but for this blog post, it hopefully will do as a teaser of the six formalised patterns. Take, e.g., the following examples that are all variations on the same theme: to-reify-or-not-to-reify, where the example in B is further dressed up with content from a foundational ontology:

Indeed, in the examples, what is shown on the left-hand side does not have the exact same information content as what is shown on the right-hand side, but the underlying conceptualization is pretty much the same. The models on the right-hand side are more precise, for one has the opportunity to specify those, like stating that a particular marriage is between two persons (so, no group marriages allowed). Whether one always needs such more precise constraints is a separate matter.

Then there’s the Employee example mentioned in this post’s introduction with two alternate ways of representing it:

That is, a modeller chooses between representing the role an object performs/has as a subclass of that object or in a separate hierarchy of roles. Foundational ontologies take the latter option, domain ontologies the former.

These examples are instantiations of small modelling patterns (of which there may be more than the six formalised in the paper). To devise mappings between them, one ends up with alignments in such a way that they are between two patterns, rather than 1:1 mappings. To get there, we had to take some preliminary steps on how to represent it all formally, such as specifying the language for a pattern and a defining an ontology pattern alignment. This allowed us to formalise the patterns and devise that formal specification of the heterogeneous alignments.

That outcome, in turn, feeds into the alignment pattern search and checking algorithms. The algorithms show that it is feasible to find those patterns automatically, which then can propose possible alignments to the modeller, and that, upon aligning, one can check whether that’s done correctly. For instance, take the following two ontologies graphically represented in an (extended, enhanced) ICOM tool:

Two inter-ontology assertions have been made, pointed out with the two yellow arrows; i.e., ‘Tennis’ is a subclass of ‘Tournament’ and ‘TennisPlayer’ is a subclass of ‘Athlete’. The pattern search algorithm then will try to find instantiations for the small modelling patterns for alignment. Once something is found—in this case, pattern A fits—it will check whether all conditions for the alignment can be satisfied, and if so, it will propose a possible alignment, which is shown in the following illustrative figure:

Of interest here is, perhaps, the ‘new’ object property being proposed, indicated with the yellow arrow, that amounts to an equivalence to the partOf+Match+played. (That threesome can’t be mapped as equivalent to ‘participated’ due to differences in domain and range axioms, and drawing three subsumption lines from ‘participated’ to ‘part of’, ‘Match’, and ‘played’ is awkward.). The algorithms’ output then thus reduces the alignment into a final question to the modeller along the line of “are you ok with the alignment between the purple elements in the two diagrams?”, and accept or reject it. Please refer to the paper for further details.

The principles presented could possibly be used also for refactoring of an ontology, like in TDD [2] or when ‘preparing’ an ontology to align to a foundational ontology. More results on this topic are in the pipeline, and if you want to know now already, we can have a chat at ESWC.

References

[1] Fillottrani, P.R., Keet, C.M. Patterns for Heterogeneous TBox Mappings to Bridge Different Modelling Decisions. 14th Extended Semantic Web Conference (ESWC’17). Springer LNCS. Portoroz, Slovenia, May 28 – June 2, 2017. (in print)

[2] Keet, C.M., Lawrynowicz, A. Test-Driven Development of Ontologies. In: Proceedings of the 13th Extended Semantic Web Conference (ESWC’16). Springer LNCS 9678, 642-657. 29 May – 2 June, 2016, Crete, Greece.

Relations with roles / verbalising object properties in isiZulu

The narratives can be very different for the paper “A model for verbalising relations with roles in multiple languages” that was recently accepted paper at the 20th International Conference on Knowledge Engineering and Knowledge management (EKAW’16), for the paper makes a nice smoothie of the three ingredients of language, logic, and ontology. The natural language part zooms in on isiZulu as use case (possibly losing some ontologist or logician readers), then there are the logics about mapping the Description Logic DLR’s role components with OWL (lose possible interest of the natural language researchers), and a bit of philosophy (and lose most people…). It solves some thorny issues when trying to verbalise complicated verbs that we need for knowledge-to-text natural language generation in isiZulu and some other languages (e.g., German). And it solves the matching of logic-based representations popularised in mainly UML and ORM (that typically uses a logic in the DLR family of Description Logic languages) with the more commonly used OWL. The latter is even implemented as a Protégé plugin.

Let me start with some use-cases that cause problems that need to be solved. It is well-known that natural language renderings of ontologies facilitate communication with domain experts who are expected to model and validate the represented knowledge. This is doable for English, with ACE in the lead, but it isn’t for grammatically richer languages. There, there are complications, such as conjugation of verbs, an article that may be dependent on the preposition, or a preposition may modify the noun. For instance, works for, made by, located in, and is part of are quite common names for object properties in ontologies. They all do have a dependent preposition, however, there are different verb tenses, and the latter has a copulative and noun rather than just a verb. All that goes into the object properties name in an ‘English-based ontology’ and does not really have to be processed further in ontology verbalisation other than beautification. Not so in multiple other languages. For instance, the ‘in’ of located in ends up as affixes to the noun representing the object that the other object is located in. Like, imvilophu ‘envelope’ and emvilophini ‘in the envelope’ (locative underlined). Even something straightforward like a property eats can end up having to be conjugated differently depending on who’s eating: when a human eats, it is udla in isiZulu, but for, say, a dog, it is idla (modification underlined), which is driven by the system of noun classes, of which there are 17 in isiZulu. Many more examples illustrating different issues are described in the paper. To make a long story short, there are gradations in complicating effects, from no effect where a preposition can be squeezed in with the verb in naming an OP, to phonological conditioning, to modifying the article of the noun to modifying the noun. A ‘3rd pers. sg.’ may thus be context-dependent, and notions of prepositions may modify the verb or the noun or the article of the noun, or both. For a setting other than English ontologies (e.g., Greek, German, Lithuanian), a preposition may belong neither to the verb nor to the noun, but instead to the role that the object plays in the relation described by the verb in the sentence. For instance, one obtains yomuntu, rather than the basic noun umuntu, if it plays the role of the whole in a part-whole relation like in ‘heart is part of a human’ (inhliziyo iyingxenye yomuntu).

The question then becomes how to handle such a representation that also has to include roles? This is quite common in conceptual data modelling languages and in the DLR family of DL languages, which is known in ontology as positionalism [2]. Bumping up the role to an element in the representation language—thus, in addition to the relationship—enables one to attach information to it, like whether there is a (deep) preposition associated with it, the tense, or the case. Such role-based annotations can then be used to generate the right element, like einen Betrieb ‘some company’ to adjust the article for the case it goes with in German, or ya+umuntu=yomuntu ‘of a human’, modifying the noun in the object position in the sentence.

To get this working properly, with a solid theoretical foundation, we reused a part of the conceptual modelling languages’ metamodel [3] to create a language model for such annotations, in particular regarding the attributes of the classes in the metamodel. On its own, however, it is rather isolated and not immediately useful for ontologies that we set out to be in need of verbalising. To this end, it links to the ‘OWL way of representing relations’ (ontologically: the so-called standard view), and we separate out the logic-based representation from the readings that one can generate with the structured representation of the knowledge. All in all, the simplified high-level model looks like the picture below.

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

Simplified diagram in UML Class Diagram notation of the main components (see paper for attributes), linking a section of the metamodel (orange; positionalist commitment) to predicates (green; standard view) and their verbalisation (yellow). (Source: [1])

That much for the conceptual part; more details are described in the paper.

Just a fluffy colourful diagram isn’t enough for a solid implementation, however. To this end, we mapped one of the logics that adhere to positionalism to one of the standard view, being DLR [4] and OWL, respectively. It equally well could have been done for other pairs of languages (e.g., with Common Logic), but these two are more popular in terms of theory and tools.

Having the conceptual and logical foundations in place, we did implement it to see whether it actually can be done and to check whether the theory was sufficient. The Protégé plugin is called iMPALA—it could be an abbreviation for ‘Model for Positionalism And Language Annotation’—that both writes all the non-OWL annotations in a separate XML file and takes care of the renderings in Protégé. It works; yay. Specifically, it handles the interaction between the OWL file, the positionalist elements, and the annotations/attributes, plus the additional feature that one can add new linguistic annotation properties, so as to cater for extensibility. Here are a few screenshots:

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

OWL’s arbeitetFuer ‘works for’ is linked to the relationship arbeiten.

The prey role in the axiom of the impala being eaten by the ibhubesi.

The prey role in the axiom of the impala being eaten by the ibhubesi.

 Annotations of the prey role itself, which is a role in the relationship ukudla.

Annotations of the prey role itself, which is a role in the relationship ukudla.

We did test it a bit, from just the regular feature testing to the African Wildlife ontology that was translated into isiZulu (spoken in South Africa) and a people and pets ontology in ciShona (spoken in Zimbabwe). These details are available in the online supplementary material.

The next step is to tie it all together, being the verbalisation patterns for isiZulu [5,6] and the OWL ontologies to generate full sentences, correctly. This is set to happen soon (provided all the protests don’t mess up the planning too much). If you want to know more details that are not, or not clearly, in the paper, then please have a look at the project page of A Grammar engine for Nguni natural language interfaces (GeNi), or come visit EKAW16 that will be held from 21-23 November in Bologna, Italy, where I will present the paper.

 

References

[1] Keet, C.M., Chirema, T. A model for verbalising relations with roles in multiple languages. 20th International Conference on Knowledge Engineering and Knowledge Management EKAW’16). Springer LNAI, 19-23 November 2016, Bologna, Italy. (in print)

[2] Leo, J. Modeling relations. Journal of Philosophical Logic, 2008, 37:353-385.

[3] Keet, C.M., Fillottrani, P.R. An ontology-driven unifying metamodel of UML Class Diagrams, EER, and ORM2. Data & Knowledge Engineering, 2015, 98:30-53.

[4] Calvanese, D., De Giacomo, G. The Description Logics Handbook: Theory, Implementation and Applications, chap. Expressive description logics, pp. 178-218. Cambridge University Press (2003).

[5] Keet, C.M., Khumalo, L. Toward a knowledge-to-text controlled natural language of isiZulu. Language Resources and Evaluation, 2016, in print.

[6] Keet, C.M., Khumalo, L. On the verbalization patterns of part-whole relations in isiZulu. Proceedings of the 9th International Natural Language Generation conference 2016 (INLG’16), Edinburgh, Scotland, Sept 2016. ACL, 174-183.