Automatically finding the feasible object property

Late last month I wrote about the updated taxonomy of part-whole relations and claimed it wasn’t such a big deal during the modeling process to have that many relations to choose from. Here I’ll back up that claim. Primarily, it is thanks to the ‘Foundational Ontology and Reasoner enhanced axiomatiZAtion’ (FORZA) approach which includes the Guided ENtity reuse and class Expression geneRATOR (GENERATOR) method that was implemented in the OntoPartS-2 tool [1]. The general idea of the GENERATOR method is depicted in the figure below, which outlines two scenarios: one in which the experts perform the authoring of their domain ontology with the help of a foundational ontology, and the other one without a foundational ontology.

generator

I think the pictures are clearer than the following text, but some prefer text, so here goes the explanation attempt. Let’s start with scenario A on the left-hand side of the figure: a modeller has a domain ontology and a foundational ontology and she wants to relate class two domain classes (indicated with C and D) and thus needs to select some object property. The first step is, indeed, selecting C and D (e.g., Human and Heart in an anatomy ontology); this is step (1) in the Figure.

Then (step 2) there are those long red arrows, which indicate that somehow there has to be a way to deal with the alignment of Human and of Heart to the relevant categories in the foundational ontology. This ‘somehow’ can be either of the following three options: (i) the domain ontology was already aligned to the foundational ontology, so that step (2) is executed automatically in the background and the modeler need not to worry, (ii) she manually carries out the alignment (assuming she knows the foundational ontology well enough), or, more likely, (iii) she chooses to be guided by a decision diagram that is specific to the selected foundational ontology. In case of option (ii) or (iii), she can choose to save it permanently or just use it for the duration of the application of the method. Step (3) is an automated process that moves up in the taxonomy to find the possible object properties. Here is where an automated reasoner comes into the equation, which can step-wise retrieve the parent class, en passant relying on taxonomic classification that offers the most up-to-date class hierarchy (i.e., including implicit subsumptions) and therewith avoiding spurious candidates. From a modeller’s viewpoint, one thus only has to select which classes to relate, and, optionally, align the ontology, so that the software will do the rest, as each time it finds a domain and range axiom of a relationship in which the parents of C and D participate, it is marked as a candidate property to be used in the class expression. Finally, the candidate object properties are returned to the user (step 4).

While the figure shows only one foundational ontology, one equally well can use a separate relation ontology, like PW or PWMT, which is just an implementation variant of scenario A: the relation ontology is also traversed upwards and on each iteration, the base ontology class is matched against relational ontology to find relations where the (parent of the) class is defined in a domain and range axiom, also until the top is reached before returning candidate relations.

The second scenario with a domain ontology only is a simplified version of option A, where the alignment step is omitted. In Figure-B above, GENERATOR would return object properties W and R as options to choose from, which, when used, would not generate an inconsistency (in this part of the ontology, at least). Without this guidance, a modeler could, erroneously, select, say, object property S, which, if the branches are disjoint, would result in an inconsistency, and if not declared disjoint, move class C from the left-hand branch to the one in the middle, which may be an undesirable deduction.

For the Heart and Human example, these entities are, in DOLCE terminology, physical objects, so that it will return structural parthood or plain parthood, if the PW ontology is used as well. If, on the other hand, say, Vase and Clay would have been the classes selected from the domain ontology, then a constitution relation would be proposed (be this with DOLCE, PW, or, say, GFO), for Vase is a physical object and Clay an amount of matter. Or with Limpopo and South Africa, a tangential proper parthood would be proposed, because they are both geographic entities.

The approach without the reasoner and without the foundational ontology decision diagram was tested with users, and showed that such a tool (OntoPartS) made the ontology authoring more efficient and accurate [2], and that aligning to DOLCE was the main hurdle for not seeing even more impressive differences. This is addressed with OntoPartS-2, so it ought to work better. What still remains to be done, admittedly, is that larger usability study with the updated version OntoPartS-2. In the meantime: if you use it, please let us know your opinion.

 

References

[1] Keet, C.M., Khan, M.T., Ghidini, C. Ontology Authoring with FORZA. 22nd ACM International Conference on Information and Knowledge Management (CIKM’13). ACM proceedings, pp569-578. Oct. 27 – Nov. 1, 2013, San Francisco, USA.

[2] Keet, C.M., Fernandez-Reyes, F.C., Morales-Gonzalez, A. Representing mereotopological relations in OWL ontologies with OntoPartS. 9th Extended Semantic Web Conference (ESWC’12), Simperl et al. (eds.), 27-31 May 2012, Heraklion, Crete, Greece. Springer, LNCS 7295, 240-254.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.