KCAP13 poster on aligning and mapping foundational ontologies

I announced in an earlier post the realisation of the Repository of Ontologies for MULtiple USes ROMULUS foundational ontology library as part of Zubeida’s MSc thesis, as well as that a very brief overview describing it was accepted as a poster/demo paper [1] at the 7th International Conference on Knowledge Capture (KCAP’13) that will take place next week in Banff, Canada. The ‘sneak preview’ of the poster in jpeg format is included below. To stay in style, it has roughly the same colour scheme as the ontology library.

KCAP13romulusPoster

The poster’s content is slightly updated compared to the contents of the 2-page poster/demo paper: it has more detail on the results obtained with the automated alignments. On reason for that is the limited space of the KCAP paper, another is that a more comprehensive evaluation has been carried out in the meantime. We report on those results in a paper [2] recently accepted at the 5th International Conference on Knowledge Engineering and Ontology Development (KEOD’13). The results of the tools aren’t great when compared to the ‘gold standard’ of manual alignments and mappings, but there are some interesting differences due to—and thanks to—the differences in the algorithms that the tools use. Mere string matching generates false positives and misses ‘semantic [near-]synonyms’ (e.g., site vs. situoid, but missing perdurant/occurrent), and a high reliance on structural similarity causes a tool to miss alignments (compare, e.g., the first subclasses in GFO vs. those in DOLCE). One feature that surely helps to weed out false positives is the cross-check whether an alignment would be logically consistent or not, as LogMap does. That is also what Zubeida did with the complete set of alignments between DOLCE, BFO, and GFO, aided by HermiT and Protégé’s explanation feature.

The KEOD paper describes those ‘trials and tribulations’; or: there are many equivalence alignments that do not map due to a logical inconsistency. They have been analysed on the root cause (mainly: disjointness axioms between higher-level classes), and, where possible, solutions are proposed, such as subsumption instead of equivalence or proposing to make them sibling classes. Two such examples of alignments that do not map are shown graphically in the poster: a faltering temporal region that apparently means something different in each of the ontologies, and necessary-for does not map to generic-dependent due to conflicting domain/range axioms. The full list of alignments, mappings, and logical inconsistencies is now not only browsable on ROMULUS, as announced in the KCAP demo paper, but also searchable.

Having said that, it is probably worthwhile repeating the same caution made in the paper and previous blog post: what should be done with the inconsistencies is a separate issue, but at least now it is known in detail where the matching problems really are, so that we can go to the next level. And some mappings are possible, so some foundational ontology interchangeability is possible (at least from a practical engineering viewpoint).

References

[1] Khan, Z.C., Keet, C.M. Toward semantic interoperability with aligned foundational ontologies in ROMULUS. Seventh International Conference on Knowledge Capture (K-CAP’13), ACM proceedings. 23-26 June 2013, Banff, Canada. (poster &demo)

[2] Khan, Z.C., Keet, C.M. Addressing issues in foundational ontology mediation. Fifth International Conference on Knowledge Engineering and Ontology Development (KEOD’13). 19-22 September, Vilamoura, Portugal.

Advertisement

One response to “KCAP13 poster on aligning and mapping foundational ontologies

  1. Pingback: Mixed experiences with conferences and traveling | Keet blog

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.