Knowledge about, say, long established agricultural practices, culinary customs and typical dishes (and its ingredient evolution over the centuries), medicinal plants and so on falls under the term indigenous knowledge in South Africa, cultural heritage in Europe (that I wrote about earlier), and traditional knowledge in other countries. Whichever term you prefer, it’s that kind of knowledge that is on the way of being lost due to changes in society. There is consensus to preserve it somehow (and possibly make some money from it along the way). Given that there’s lots of it—hence, lots of data, information, and knowledge, that has to be managed—computing and IT enter the picture.
For South Africa, this is managed through the large-scale project from the Department of Science & Technology’s NIKSO office that aims at building a “national recordal system” and an IT infrastructure (IKMS) to both store and access the indigenous knowledge. Setting up such a system consists of some typical software development themes (following consultation with stakeholders), such as the need for handling varied data formats (documents, images, audio), integration of the existing disparate databases and other IT resources in SA into the IKMS, availability of the information in all 11 official languages, the need for a citizen portal, and so on.
Some of the requirements smelled very much like a possible nice use case for Semantic Web Technologies so as to implement a really state of the art infrastructure with enhanced capabilities compared to standard applications. Ronell Alberts, Thomas Fogwill and I assessed that when I was visiting CSIR-Meraka in August and September 2010 as one of the secondments from the EU FP7 Net2 Project. The assessment of possibilities of using semantic web technologies, including the assessment of maturity for off-the-shelf usage, was accepted at IST-Africa recently [1]. We focused on enhanced querying, semantic browsing, questions answering, multilingual information access, knowledge generation, classification of information, formalisation of scientific knowledge & discovery, and knowledge-based data integration.
This we took a step further by zooming in on the ontologies-part of semantic web technologies for four of the usage scenarios, the selection of which was based on their potential for impact and maturity and inclusion into the IKMS. These are: ontology based querying and browsing; a natural language independent ontology for multilingual data access; support for collaborative knowledge generation; and the formalisation of IK for scientific discovery. More precisely, we investigated the requirements for ontology languages to meet the IKMS needs and how well they are met, if at all. A paper describing the details was just accepted for OWLED’12 [2].
In short: some of the required OWL features include representation of vagueness, mereotopology, modularisation, and extended support for internationalization (i.e., multilingualism) and annotation for collaborative ontology development. Thus, the first three put new requirements on the expressiveness of the OWL language itself, and the latter two formulate requirements akin to ‘usability’ extension for OWL. To motivate it all, we first describe each topic, provide real examples, and a few references to current research and tools, which is then followed by the OWL requirements taking into account the examples and generalizing from them; details can be found in the paper.
Hopefully there will an extensive and useful response at OWLED’12, like the feedback we received at OWLED’07 and DL’07 on the requirements on automated reasoning for bio-ontologies [3]. Obviously, if you have a solution to one or more of the gaps that we had overlooked, please leave a comment or send me an email.
References
[1] Fogwill, T., Alberts, R., Keet, C.M. The potential for use of semantic web technologies in IK management systems. IST-Africa Conference 2012. May 9-11, Dar es Salaam, Tanzania.
[2] Alberts, R., Fogwill, T., Keet, C.M. Several Required OWL Features for Indigenous Knowledge Management Systems. 7th Workshop on OWL: Experiences and Directions (OWLED 2012). 27-28 May, Heraklion, Crete, Greece. CEUR-WS Vol-xxx. 12p.
[3] Keet, C.M., Roos, M., Marshall, M.S. A survey of requirements for automated reasoning services for bio-ontologies in OWL. Third international Workshop OWL: Experiences and Directions (OWLED 2007), 6-7 June 2007, Innsbruck, Austria. CEUR-WS Vol-258. 10p. This was described informally in an earlier post.