The previous three lectures covered the core topics in ontology engineering. There are many ontology engineering topics that zoom in on one specific aspect of the whole endeavour, such as modularization, the semantic desktop, ontology integration, combining data mining and clustering with ontologies, and controlled natural language interfaces to OWL. In the next two lectures on Dec 1 and Dec 14, we will look at three such advanced topics in modelling and language and tool development, being the (ever recurring) issues with part-whole relations, temporalizations and its workarounds, and languages and tools for dealing with vagueness and uncertainty.
Part-whole relations
On the one hand, there is a SemWeb best practices document about part-whole relations and further confusion by OWL developers [1, 2] that was mentioned in a previous lecture. On the other hand, part-whole relations are deemed essential by the most active adopters of ontologies—i.e., bio- and medical scientist—while its full potential is yet to be discovered by, among others, manufacturing. A few obvious examples are how to represent plant or animal anatomy, geographic information data, and components of devices. And then the need to reason over it. When we can deduce which part of the device is broken, then only that part has to be replaced instead of the whole it is part of (saving a company money). One may want to deduce that when I have an injury in my ankle, I have an injury in my limb, but not deduce that if you have an amputation of your toe, you also have an amputation of your foot that the toe is (well, was) part of. If a toddler swallowed a Lego brick, it is spatially contained in his stomach, but one does not deduce it is structurally part of his stomach (normally it will leave the body unchanged through the usual channel). This toddler-with-lego-brick gives a clue why, from an ontological perspective, equation 23 in [2] is incorrect.
To shed light on part-whole relations and sort out such modelling problems, we will look first at mereology (the Ontology take on part-whole relations), and to a lesser extent meronymy (from linguistics), and subsequently structure the different terms that are perceived to have something to do with part-whole relations into a taxonomy of part-whole relations [3]. This, in turn, is to be put to use, be it with manual or software-supported guidelines to choose the most appropriate part-whole relation for the problem, and subsequently to make sure that is indeed represented correctly in an ontology. The latter can be done by availing of the so-called RBox Reasoning Service [3]. All this will not solve each modelling problem of part-whole relations, but at least provide you with a sound basis.
Temporal knowledge representation and reasoning
Compared to part-whole relations, there are fewer loud and vocal requests for including a temporal dimension in OWL, even though it is needed. For instance, you can check the annotations in the OWL files of BFO and DOLCE (or, more conveniently, search for “time” in the pdf) where they mention temporality that cannot be represented in OWL, or SNOMED CT’s concepts like “Biopsy, planned” and “Concussion with loss of consciousness for less than one hour” where the loss of consciousness still can be before or after the concussion, or a business rule alike ‘RentalCar must be returned before Deposit is reimbursed’ or the symptom HairLoss during the treatment Chemotherapy, and Butterfly is a transformation of Caterpillar.
Unfortunately, there is no single (computational) solution to address all these examples at once. Thus far, it is a bit of a patchwork, with, among many aspects, the Allen’s interval algebra (qualitative temporal relations, such as before, during, etc.), Linear Temporal Logics (LTL), and Computational Tree Logics (CTL, with branching time), and a W3C Working draft of a time ontology.
If one assumes that recent advances in temporal Description Logics may have the highest chance of making it into a temporal OWL (tOWL)—although there are no proof-of-concept temporal DL modelling tools or reasoners yet—then the following is ‘on offer’. A very expressive (undecidable) DL language is DLRus (with the until and since operators), which already has been used for temporal conceptual data modelling [4] and for representing essential and immutable parts and wholes [5]. A much simpler language is TDL-Lite [6], which is a member of the DL-Lite family of DL languages of which one is the basis for OWL 2 QL; but these first results are theoretical, hence no “lite tOWL” yet. It is already known that EL++ (the basis for OWL 2 EL) does not keep the nice computational properties when extended with LTL, and results with EL++ with CTL are not out yet. If you are really interested in the topic, you may want to have a look at a recent survey [7] or take a broader scope with any of the four chapters in [8] (that cover temporal KR&R, situation calculus, event calculus, and temporal action logics), and several people with the KRDB Research Centre work on temporal knowledge representation & reasoning. Depending on the remaining time during the lecture, more or less about time and temporal ontologies will pass the revue.
References
[1] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In Proc. of the 10th International Conference of Knowledge Representation and Reasoning (KR-2006), Lake District UK, 2006.
[2] B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL 2: The next step for OWL. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 6(4):309-322, 2008
[3] Keet, C.M. and Artale, A. Representing and Reasoning over a Taxonomy of Part-Whole Relations. Applied Ontology, IOS Press, 2008, 3(1-2): 91-110.
[4] Alessandro Artale, Christine Parent, and Stefano Spaccapietra. Evolving objects in temporal information systems. Annals of Mathematics and Artificial Intelligence (AMAI), 50:5-38, 2007, Springer.
[5] Artale, A., Guarino, N., and Keet, C.M. Formalising temporal constraints on part-whole relations. 11th International Conference on Principles of Knowledge Representation and Reasoning (KR’08). Gerhard Brewka, Jerome Lang (Eds.) AAAI Press, pp 673-683. Sydney, Australia, September 16-19, 2008
[6] Alessandro Artale, Roman Kontchakov, Carsten Lutz, Frank Wolter and Michael Zakharyaschev. Temporalising Tractable Description Logics. Proc. of the 14th International Symposium on Temporal Representation and Reasoning (TIME-07), Alicante, June 2007.
[7] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal Description Logics: A Survey. In Proceedings of the Fifteenth International Symposium on Temporal Representation and Reasoning. IEEE Computer Society Press, 2008.
[8] Frank van Harmelen, Vladimir Lifschitz and Bruce Porter (Eds.). Handbook of Knowledge Representation. Elsevier, 2008, 1034p. (also available from the uni library)
Note: reference 3 is mandatory reading, 4 optional reading, 2 was mandatory and 1 recommended for an earlier lecture, and 5-8 are optional.
Lecture notes: lecture 6 – Parts and temporal issues