Computer Science with/for Biology and (bio)medicine

The vibrant and emerging research area of 'doing research and engineering in the subject domain of biology and the applied biosciences' comprises one or more (sub-) disciplines of computer sciences and information technology that can be mixed with any of the (sub-) disciplines in biology, ecology, and applied biosciences (such as medicine and agriculture). Depending on the emphasis, this combination tends to favour one or more of the following terms to indicate the type of activity: Computational Biology, Systems Biology, Bioinformatics, In Silico Biology, Ecoinformatics, (Bio)Medical Informatics, and bio-ontologies, among others. But what exactly is the breadth and depth of these relatively new fields, and what are its characteristic activities? What is, or can be, used from mathematics to advance biology at a faster pace? What type of problems do bioscientists perceive that need to be solved? Is engineering only a supportive discipline for biology? If not, where and how is biology pushing the frontiers of computer science and IT? How did, and does, the combination of computer science & biology lead to landmark achievements – and which ones are considered to be achievements?

Against this background, the KRDB Research Centre of Faculty of Computer Science at the Free University of Bozen-Bolzano aimed to present and form new expertise and professional profiles who can answer the growing demands of the biosciences and ultimately our societies in the area of using both theoretical and applied aspects of computer science and engineering, thereby contributing to pushing the frontiers in computer science as well as (applied) biology. To this end, it has organized the “CS & IT with/for biology” Seminar Series. The aim of the seminars was to provide a broad spectrum of achievements, opportunities, and challenges on using/combining computer science with/for biology, highlighting diverse foci and approaches traversing biology (sub-) disciplines and applied bioscience and a wide range of computer science approaches. This coverage goes from basic biosciences, such as genetics & cellular processes and larger systems in ecology, and the applied biosciences medicine and agriculture, to CS/IT fields of ontology/ies, logics, natural language processing, database integration, and software development.

A reader [1] was made from the extended abstracts of the invited speakers, offering both a summary of the seminar as well as additional references to give useful pointers to key publications, the most recent research output, and 'hot' topics.

The first chapter in this reader provides a general overview of historical aspects and current characteristics of the rather flexible interpretation that was given to biology & informatics – and the more recent diversification into multiple niche areas. It can aid novices in the field to grasp some of the more, and less, active research activities and 'insiders' to have ample material for discussion. From this introduction, we first take a step back before going into details, by looking at some ethical considerations, as described by Heiner Fangerau. Within a short time span, many new possibilities are (or seem) just around the corner: stem cell research and personalised medicine to name just two; but who benefits, and is a regrouping of the human world population into certain groups with genetic predispositions for particular diseases – technologically not impossible – actually desirable and beneficial for the society at large? Which biases are 'built in' when we do our literature research?

The subsequent chapters go into some detail, both with regard to the technological and computer science aspects as (applied) biology. In chapter 3 Alberto Policriti introduces mathematical modelling for systems biology, with automata and pi-calulus in particular. These topics are relevant for in silico simulations of cellular processes and the mathematical complexities of the outstanding problems, i.e. modelling biological knowledge requires new solutions from mathematicians. The next chapter by Marco Roos, on the other hand, takes a case-based approach: biologists desire to understand better e.g. Huntington's Disease and histones, and to achieve this, they need a computer infrastructure to enable them to do their research. A regrouping of this requirement with technological support has resulted in the initiation of a virtual laboratory for e-science. Marie-Paule Lefranc has taken a yet different path (in chapter 5), where demands from biology, immunogenetics in this case, are combined with the latest developments in computer science, such that her laboratory belongs not only to the ‘early adopters’ of technology over the past 15 years, but also can use it effectively to discover biologically meaningful new information: bio & info in synergy.

The infamous biological data explosion that has occurred over the past 10 years may be well-know, its ‘consequently' disconnected software tools and databases is known in considerably less detail. Apart from the obvious data integration issues between databases and linking database and analysis tools, one first needs to be able to find what is there, and then for the biologist to find what s/he needs. This is a central topic of Sarah Cohen-Boulakia's contribution: what are biologists actually looking for, and how can we, automatically, find the relevant software resources? The issue of finding the right information is addressed from an entirely different angle and context by Werner Ceusters in chapter 7. Advances made in the sub-discipline of natural language understanding can help processing electronic health records, annotated with an ontology, to mine that data and discover new patterns in the patient's treatment and history with as aim to improve biomedicine. Last, with Aldo Gangemi we take a closer look at the usefulness of task and action ontologies for software development in agriculture, with the UN Food and Agriculture Organisation (FAO) among the beneficiaries.

While the topics do not cover all aspects of CS\&IT with/for (applied) biology, it can give you some insight in its multifaceted aspects, ranging from applied mathematics and philosophy to software engineering, from core to applied biology, and from enabling information technology to successful combination of bio-info and biology-driven computer science.

[1] CSBio reader: extended abstracts of the 'CS&IT with/for biology' Seminar Series. Free University of Bozen-Bolzano, 2005.


4 responses to “Computer Science with/for Biology and (bio)medicine

  1. Pingback: Bio::Blogs #3 at business|bytes|genes|molecules

  2. Pingback: 2010 in (blog) review « Keet blog

  3. Pingback: Five years of keet blog « Keet blog

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.